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Mathematical models of networks of molecular interactions controlling the expression of traits 
could theoretically be used as genotype to phenotype (GP) maps. Such maps are nonlinear 
functions of the environment and the genotype. It is possible to use nonlinear least square 
minimization methods to fit a model to a set of phenotypic data but the convergence of these 
methods is not automatic and may lead to a multiplicity of solutions. Both factors raise a 
number of questions with respect to using molecular networks as nonlinear maps. A method to 
fit a molecular network representing a bistable switch to various types of phenotypic data is 
introduced. This method relies on the identification of the model stable steady states and the 
estimation of the proportion of cells in each of them. By using environmental perturbations, it 
is possible to collect time-series of phenotypic data resulting in a smooth objective function 
leading to a good estimate of the parameters used to generate the simulated phenotypes. 

1 Introduction 

Pharmacogenomics’ ambition is to relate a phenotype, the effect of a drug, to the 
genotype of patients exposed to environmental conditions partly defined by the 
drugs they receive [1]. For a geneticist this project requires building a genotype to 
phenotype map (GP map) of drug effects. Mathematically, a GP map is a function f  
such as . It maps into a phenotypic space, 
the product of a genetic space generated by the genetic diversity in a population by 
the space of environmental conditions to which individuals of this population can 
be exposed [2]. The simplest GP map is the one upon which relies Mendelian 
genetics. The function is Boolean indicating the presence or absence of a character. 
The environment is ignored and genes are considered independent of each other. 
Since most traits are quantitative and not binary, the genetics of quantitative traits 
relies on a more refined family of GP maps representing the phenotype as linear 
statistical models. In general multiple loci are assumed to contribute additively to 
the phenotype. In some cases terms representing digenic interactions are introduced. 
The effect of the environment on the phenotype is generally decomposed into an 
additive term and a genotype by environment term [3].  

(f ,phenotype genotype environment= )

Just like complex interactions between multiple genetic loci generate a 
diversity of phenotypes for pathologies that were considered monogenic [4], 
responses to drugs are generally considered multigenic traits [1, 5]. Many of the 
genetic determinants controlling the response to drugs have been identified by a 
candidate-gene approach relying on the understanding of the molecular mechanisms 
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of the drug action and metabolism. Integrating into a mathematical model the 
network of molecular interactions affecting the response to a drug is therefore an 
attractive avenue to build the GP map.  

Using different approaches, a number of authors have recently demonstrated 
that it is possible to build mathematical models to predict the phenotype controlled 
by small artificial gene networks [6-10], larger natural networks [11, 12], or even 
genome-wide metabolic pathways [13, 14]. In order to use a mathematical model as 
a GP map it is necessary to bridge the molecular and population-levels views of the 
genotype-phenotype relationship. When using mass-action models of molecular 
interactions, it has proved possible to analyze the genetic properties of a molecular 
network by associating genetic polymorphism with discrete kinetic values of the 
parameter of each interaction [15]. The possibility of determining the kinetic 
parameters of each interaction is key to using molecular networks as GP maps.  

One way to estimate the GP map parameters is to find a set of parameters 
minimizing the difference between the phenotype predicted by the model and the 
observed phenotype. Since the phenotype is a nonlinear function of the parameters, 
this problem can be addressed by using a nonlinear least-square approach [16, 17]. 
Nonlinear minimization methods are iterative algorithms that require a set of 
starting parameter values to converge to a local solution. Different starting values 
can result in different solutions with different quality of fit. This limitation has the 
potential to prevent a unique determination of the map parameters. The topology of 
the molecular network model and the experimental design both contribute to shape 
the objective function being minimized. The number and geometry of its local 
minima determines the possibility to find and identify solutions corresponding to 
the actual parameters’ values that generated the set of observed phenotypes. Since 
for many real molecular networks, it is not possible to explore the entire parameter 
space, it is possible that no starting parameter values will converge toward the 
actual parameter set. It is also possible that many starting values will result in many 
solutions with similar fits making it impossible to distinguish the solutions closest 
to the actual parameter set. Few authors used nonlinear least-square minimization to 
estimate GP map parameters [12, 18] and it is likely that a number of people 
attempted this without success and never published these negative results. 

This paper introduces an algorithm to estimate the parameters of a molecular 
network from time-series of molecular phenotypes collected after an environmental 
perturbation. The objective function used takes into consideration the possibility 
that phenotypic data collected at the cell population level result from a random 
distribution of the cells among multiple stable-steady states. The presence of a 
positive feed-back loop [19] creates the possibility of multistationarity. Multiple 
steady states have been observed in artificial gene networks [8-10, 20, 21] but also 
in natural regulatory networks [11], for which this possibility had not been 
considered even recently [12].  



 

The algorithm considered in this article is automatic and can be applied to 
virtually any mass action model of molecular networks without requiring any 
manual mathematical derivation. 

2 Methods 

2.1 Model 

The model used in this article is a mass action equivalent of a model of a bi-stable 
switch [9, 20, 21]. In the list of reactions below, Gi and GXi refer to the active and 
inactive forms of the ith gene coding for the protein Pi, respectively, while Li 
represents the ith ligand and PXi the ith protein complexed with its ligand. 
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The time-evolution of the model is represented by mass-action differential 

equations. The set of coupled differential equations can automatically be derived 
from the chemical equations Eq. (1) [15]. 

Mass conservation relationships can be used to eliminate some variables from 
the model. Assuming that there is only one copy of each of the two genes in the 
system, the first mass-conservation relation makes it possible to eliminate the 
repressed forms of the genes. We also assume that the interaction between the small 
molecules representing the environment and the repressors are much faster than the 
other reactions. Using a quasi-steady state approximation, we eliminate R9 to R12 
from the model. This results in the list of reaction rates below where  is the 
vector representing the state of the system and ri the rate of the reaction Ri: 

X
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The differential equation representing the time evolution of the system is 
derived from this list of reaction rates. 

2.2 Numerical Identification of the Steady States 

The most generic way of finding steady states is to find the solutions of Eq. (3) 
below. The notation below indicates that the reaction rates depend on the 
parameterization of the model, ( )1 8,...,k k=K , and the environment, :  ( )1 2,L L=E
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Roots can be determined by minimizing ( )F X  starting from any point in the 

model state space. Since Eq. (3) is nonlinear, it is not possible to analytically find 
its solutions. In order to alleviate this limitation, a grid of starting points is created 
in a region of the state space expected to include all the biologically relevant steady 
states of the model. 

Variables corresponding to conserved molecules are bounded by the initial 
conditions. Assuming that each gene in the model has a single copy, then 

. The asymptotic values of the non-conserved molecules, i.e. 
proteins in this case, is somewhere between 0 and 
0 1 with 1, 2iG i≤ ≤ =

production degradationk k ,the asymptotic 
value corresponding to the maximum expression of the gene. Therefore, in the case 
of the model considered here, all the steady states are expected to be within 

1 3 2 4[0,1]x[0, ]x[0, ]x[0,1]V k k k k= .  
It is therefore possible to regularly sample V with a user-specified resolution. 

By starting the minimization algorithm from each point in this grid, a numerical 
solution to Eq. (3) will generally be found for each starting point. Numerical errors 
and differences of convergence toward the same limits will result in minor 
numerical differences between solutions reached from different starting conditions. 
If the distance between a solution and another previously found solution is less than 
some specified value, it is assumed that they are identical.  



 

After the scan of V is complete, the stability of the steady states is analyzed by 
computing, at the steady state, the eigenvalues of the Jacobian matrix associated to 
Eq. (3). If the real parts of all eigenvalues are negative, then the steady state is 
stable.  

2.3 Fitting to Asymptotic Phenotypes 

In the context of this article, “asymptotic phenotypes” refers to phenotypic data 
collected in the stationary regime [12, 22] in different environments 

 with 1,...,jE j ν= . Since in general, all variables of the model cannot be observed, 
the number of data points collected in each environment µ is less than M the total 
number of state-variables of the model. It is convenient to represent asymptotic 
phenotypes as a Xµ ν matrix . Now that the experimental data set is structured, it 
is necessary to generate a predicted phenotype 

P

( )Q K  corresponding to a given set 

of parameters K. Assuming that it is possible to compute ( )Q K , then the least-
square distance that needs to be minimized to fit the model to the phenotypes, 

, is: ( ,d K P)
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d Q K E P

µ ν

= =
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Computing the predicted phenotype for a specified environment and set of 
parameters is immediate if they result in a single stable steady state S. In this 
case: ( ) ( ), ,   1,...,   1,...,i j i j i jµ ν= = =S K E Q K E . 

In conditions where the model has two stable steady states S and T, then the 
observed phenotype P is likely to result from a distribution of cells in the two 
steady states. So, instead of having a direct correspondence between the predicted 
phenotype and the observed phenotype, the predicted phenotype is a weighted 
average of the two stable steady states. What is not known, though, is the 
proportion of cells in each of the steady states. This proportion needs to be 
estimated by solving a linear constrained least-square problem:  

 ( ) ( ) ( ) ( ) ( )( )
[0,1]

, , 1 ,min
α

α α
∈

= + − −Q K E S K E T K E P E   (5). 

This approach can be generalized to more than two stable steady states. 

2.4 Fitting to a Time Series of Phenotypes 

Observing the model state variables at different points in time is a natural way of 
collecting data characterizing the model dynamics [9, 20]. Many experimental 
designs can lead to this type of data. Only a single simple experiment is considered 
in this paper but it demonstrates that system multi-stationarity needs to be 
considered to properly analyze the data. 



 

A cell population is placed in a first environment E1 until it reaches a stationary 
regime indicated by the stabilization of the phenotype. An instantaneous 
perturbation is applied to the environment creating a new environmental condition 
E2. Phenotypic data are recorded at different time points while the population 
stabilizes toward a new stationary regime. For instance, cells can be grown in 
absence of ligands. One of the ligands is added to the growth medium creating a 
new environment. Samples of cell culture are taken and phenotyped at different 
points in time after the ligand has been added. This design can be generalized to 
multiple environmental perturbations. E1,j  and E2,j refer to first and second 
environments of the jth perturbation. The first phenotype of each time series is 
collected in the stationary regime before the perturbation is applied. All other 
phenotypes are collected in the second environment and are indexed by the instant 
of observation. Similarly, it is necessary to compute a series of predicted 
phenotypes corresponding to the series of experimental data. The distance between 
the predicted and the observed phenotypes is computed by summing the distance 
over all time-points: 

 ( ) ( ) ( 2

2, 2,
1 1 1

, , ,i j k i j k
k i j

d t
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Let be the solution of Eq. (3) starting from . Computing the 
predicted phenotype for a specified environmental perturbation and set of 
parameters is immediate if the initial environment and parameter set result in a 
single stable steady state 

( 0 , , ,G X K E )t 0X

( )1,S K E . In this case the predicted phenotypes are 

extracted from the solution of Eq.  (3) starting at : 

. If the parameter set leads to two steady 

states in the initial environment 

( )1,S K E

( )( ) (1 2 2,, , , , , ,k i jG t =S K E K E Q K E )kt

( )1,S K E and ( )1,T K E , then it is possible to 

estimate the proportion α  just as in Eq. (5). The predicted phenotype would then 
be a weighted average of trajectories starting from the two initial conditions S and 
T.  

2.5 Application 

The number of variables observed in the phenotype and the number of 
environments where the phenotypes are observed are likely to have a significant 
impact on the possibility to match the model with phenotypic data. So, phenotypic 
data were simulated in different numbers of environments and by recording 
different numbers of observed variables. 

Twelve series of phenotypic data were generated using the same set of 
parameters. The first 6 phenotypes were asymptotic phenotypes. The second group 
of 6 phenotypes were time series. 



 

In both cases (asymptotic and time series), three of the phenotypes consisted in the 
observation of one protein, . In the remaining three phenotypes the values of 
both proteins were recorded in the phenotype.  

1P

The asymptotic phenotypes were simulated in three different numbers of 
environments (3, 5, and 9 environments). Environments are represented by the 
concentrations of the two ligands, (L1, L2). The first three environments were: (0,0), 
(101, 0), and (0, 101). In the 5 environments experiments, (1, 0) and (0, 1) were 
added to the first 3 environments. In the 9 environments experiments (10-1, 0), (10-2, 
0), (0, 10-1), and (0, 10-2) were added to the five previous environments.  

The times series phenotypes are transitions between two environments. In the 
first experiment, the transition from (10, 0) to (0, 10) was simulated. In the 2-
transition experiment, the transition from (5, 0) to (0, 5) was added. In the 3-
transition experiment, the transition from (1, 0) to (0, 1) was added to the two 
previous transitions. 

The same set of 25 initial parameter values was used to fit the model to the 
asymptotic and time-series phenotypes resulting in a series of 300 optimizations.   

3 Results 

3.1 Numerical Identification of Steady States 

The method to find the steady states of the model works well on this model. By 
using only the 8 “corners” of V, it seems that all the steady states of the system were 
found. Increasing the resolution of the grid did not result in a larger list of steady 
states. Depending on the environment and parameter values, two types of regimes 
were found: a single stable steady state or two stable steady states and one unstable 
steady state. 

In the least-square minimization procedures, the specificity of this network 
made it possible to use only two initial conditions ( )1 30.5, ,0,0.5k k  and 

( 2 40.5,0, ,0.5k k ) to find the stable steady states of the system. This simplification 
speeds up the optimization process that often requires hundreds or even thousands 
of steady state determinations. These two initial conditions do not allow the 
identification of the unstable steady states of the system and this approach may not 
be applicable to other models. 

A bifurcation diagram was generated by computing the steady states (stable 
and unstable) of the model over a range of L1 concentrations in order to verify the 
steady state identification procedure while the concentration of the second ligand 
was kept at 0. The system is bi-stable for low concentrations of L1 and beyond a 
critical concentration, the system becomes mono-stable. This result is consistent 
with the bifurcation diagram of a similar model [20] and also with our own 
bifurcation analysis run in XPP/AUT [23]. The positions of the stable steady states 



 

are not very much affected by the concentration of L1, except in the vicinity of the 
critical concentration. This indicates the robustness of the phenotype to 
environmental perturbation. 

3.2 Fitting to Asymptotic Phenotypes 

An exploration of the neighborhood of the original set of parameters used to 
generate the phenotypes indicated that initial conditions very close to the original 
parameter set could not lead to a good fit (data not shown). This indicated that the 
objective function was rough and may be difficult to minimize. It turned out that 
convergence was much easier to achieve than initially anticipated. When the 
phenotype included the two protein concentrations a good fit was achieved for 1/3 
of the initial conditions. 

This can be explained by observing that an infinite number of 
parameterizations have the same steady states. Solutions of Eq. (3) verify: 
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In other words, the minimization problem defined by asymptotic phenotypes is 
unidentifiable. It is not possible to estimate the 8 kinetic parameters but only the 4 
equilibrium constants. 

3.3 Fitting to Time Series of Phenotypes 

The convergence criteria used in this case was a root mean square of residuals less 
than 10-1. Using this criterion, 14 convergences were observed (9% of the 150 
optimizations using time series phenotypes) that can be broken down into 13% of 
convergence when only one protein is observed and 5% when both proteins are 
recorded. These rates of convergence need to be confirmed by analyzing a larger 
number of initial conditions using a faster implementation of this algorithm. 
However, they are surprisingly high and indicative of a relatively smooth 
performance function. 

All optimization solutions were indexed (not shown) for further analysis. In 
some cases very similar solutions were found. For instance solution 13 is very close 
to solution 14 and solution 11 is very close to solution 12. It is worth observing that 
if solutions 11, 13, and 14 all originated from the same initial condition, solution 12 
was found using a different initial condition. Also solutions 11 and 12 are not very 
far in the parameter space from solutions 13 and 14. Solution 6 is also located in the 



 

same area. Interestingly, these 5 solutions are all very close to the original set of 
parameters used to generate the phenotype. The solutions were verified by plotting 
the time course of the two protein concentrations and the profiles are consistent 
with the objective function used to generate the solutions. Protein concentrations 
corresponding to solution 11 were plotted over a wide range of initial conditions. 
Visually they are indistinguishable from the plots generated by the original set of 
parameters (Figure 1). 

 

 
Figure 1: In order to visually assess the quality of the fit, the ODE was integrated using two solutions of 
the time-series optimization experiment and the original set of parameters used to generate the simulated 
phenotypes. The initial condition for the integration was set to (1, 0, 10, 0) and the environment to (0, 
10). Solution 6 (top) was found when only one protein level was used in the phenotype. It is interesting to 
see that the fit for P1 is better than the fit for P2. The RMS computed using the two protein concentrations 
at the 11 time points is 0.83. Solution 11 (bottom) gives a very good fit of both of the protein expression 
profiles leading to a RMS of 0.06. It is necessary to zoom in on specific region of the plot to be able to 
visually distinguish the trajectories generated by the original parameter set and the trajectories generated 
by the parameters of Solution 11.  



 

4 Discussion 

4.1 Results 

Even though this work focuses on a single molecular network model, results 
presented here are likely to be relevant to other models. 
• The specific structure of molecular networks makes it possible to search for 

steady states in a limited volume of the model state space. 
• The possibility of multi-stability should always be considered. In a population 

of cells observed in a stationary regime, cells can be randomly distributed 
between multiple steady states. Therefore, the measurement of a gene activity 
at the cell population level is a weighted average of the molecule 
concentrations corresponding to the different stable steady states of the model. 
For a given set of parameter values, different repartitions of the cells in the 
different steady states leads to different qualities of fit between the model 
parameterization and the observed phenotypes. In the context of this paper, a 
linear minimization step was introduced to find the repartition minimizing the 
distance between the model and the experimental data. 

• Asymptotic phenotypic data can only lead to the determination of the 
equilibrium constants but not the kinetic constants. 

• Environmental perturbations can be used to collect time-series of phenotypic 
data. The relaxation profile observed is a weighted average of trajectories 
originating from the different stable steady states in the first environment. 

4.2 Necessary improvements of the algorithm 

In order for this method to be used for routine analysis it will be necessary to 
address a few issues.  
• The steady state finding algorithm needs to be systematically validated. In 

some cases very stiff parameter sets hampered the convergence of the steady 
state identification procedure. The reasons for this behavior need to be 
understood. Since the steady state identification algorithm is the bottleneck of 
the whole optimization process it is worth trying to improve it.  

• Determining the stability of the steady states is also an important step of the 
algorithm. Numerical errors prevent an accurate determination of the stability 
in the vicinity of critical points. It is not clear what is the impact of this issue 
on the outcome of the minimization process. Limit cycles are not considered in 
this algorithm.  

• The local optimization method described in this paper needs to be coupled to a 
global search strategy to explore the parameter space more systematically. 

• In cases where the time of sampling cannot be controlled, it could be necessary 
to take the actual sampling time into consideration when fitting the model to 
the data. 



 

• A random term representing the measurement error needs to be added to the 
phenotypic data. The effect of this term on the convergence of the least-square 
minimization should be characterized. The addition of an error term would 
transform the least-square minimization problem into a nonlinear regression 
problem that could lead to computing confidence intervals for the parameter 
estimates. 

4.3 Research directions 

We are working on a generalization of this algorithm to handle phenotypic data 
collected on a multiplicity of genotypes just like several environmental conditions 
have been considered in this paper. Along the same line, the current model assumes 
only one copy of each gene. Introducing a diploid genome with two homologous 
copies of each gene would require predicting the phenotype of heterozygous 
individuals, which requires developing a model of dominance at the parameter 
level. If only homozygous individuals are considered or a total dominance is 
assumed, the model would remain unchanged.  

Geneticists have been building models of the genotype to phenotype 
relationship for traits of other organisms for more than a century. By deciphering 
networks of molecular interactions, they hope to be able to build nonlinear GP maps 
inspired by the mechanisms controlling the expression of complex traits. It is 
expected that these maps would capture epistatic interactions between the genetic 
determinants contributing to these traits. Such a map would help a plant breeder 
define more effective breeding strategies using molecular markers to manipulate 
alleles of genes contributing to trait variations or using transgene to introduce new 
sources of genetic variation, a human geneticist better understand how multiple 
genes can contribute to the development of a pathology, and pharmacogeneticists to 
customize a medication to the genotype of their patients. Mathematical methods, 
such as those described here, are needed to analyze molecular data. The next 
challenge may be to find ways of associating macroscopic phenotypes such as a 
patient response to a treatment, with the molecular data we collect and analyze. 
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