
An Adaptive Dynamic Programming Algorithm for the Side Chain Placement Problem

A. Leaver-Fay, B. Kuhlman, and J. Snoeyink

Pacific Symposium on Biocomputing 10:16-27(2005)

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

AN ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM
FOR THE SIDE CHAIN PLACEMENT PROBLEM

ANDREW LEAVER-FAY BRIAN KUHLMAN JACK SNOEYINK

UNC-Chapel Hill
Chapel Hill, NC 27514, USA

leaverfa@email.unc.edu
bkuhlman@email.unc.edu
snoeyink@email.unc.edu

Larger rotamer libraries, which provide a fine grained discretization of side chain

conformation space by sampling near the canonical rotamers, allow protein de-
signers to find better conformations, but slow down the algorithms that search for

them. We present a dynamic programming solution to the side chain placement

problem which treats rotamers at high or low resolution only as necessary. Dy-
namic programming is an exact technique; we turn it into an approximation, but

can still analyze the error that can be introduced. We have used our algorithm to

redesign the surface residues of ubiquitin’s beta sheet.

1. Introduction

Current techniques for protein redesign fit new amino acids onto the rigid
backbone scaffold of a known protein. Side chain conformations are al-
most always modeled by a rotamer library that discretely samples the con-
formation space. These libraries are obtained from observed side chain
conformations in solved structures and/or by quantum calculations with
small molecules.5,15 The energy of a placement depends on the rotamer
(or state, Sv) assigned to each residue v, and can be expressed as a sum
of internal/background energies for each rotamer and interaction energies
between pairs of residues:∑

v

Eself (Sv) +
∑

v1<v2

Epair(Sv1 , Sv2). (1)

Minimizing energy expression (1) is the side chain placement problem.
There are two natural subproblems: the rotamer relaxation problem, where
the search is only over conformational space, and the redesign problem that
explicitly involves the additional search over sequence space.

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

Many computational methods have been applied to side chain
placement, including simulated annealing (SA),2,8,16 dead-end elimina-
tion (DEE),4,14 branch-and-bound,7 potentials of mean force,10 genetic
algorithms,3 and integer linear programming.6 We are not aware of a viable
dynamic programming1 (DP) solution that scales to the size of practical
rotamer libraries. DP, unlike all other methods except DEE and branch-
and-bound, is guaranteed to find the global optimal state assignment. To
make DP viable, we capture all pairs with non-negligible interactions in an
interaction graph, which guides the dynamic programming as we describe
in the next section. This is an extension of our previous work on the hydro-
gen placement problem.13 For side chain placement, we make the algorithm
adaptively explore the rotamers at either high or low resolution.

2. Methods

2.1. Interaction Graph Formulation

A graph G = {V,E} consists of a set V of vertices and E ⊂ V × V of
edges. We say that vertices u and v are adjacent if the pair (u, v) ∈ E.
A hypergraph is a generalization of a graph in which an edge (sometimes
called a hyperedge) can contain any number of vertices of V . The degree of
a hyperedge is the number of vertices it is incident upon. In Fig. 1b, we
draw a hypergraph with the vertices as points and the hyperedges as curves
encircling them.

We can initially create an interaction graph, a hypergraph, G = {V,E},
that captures energy expression (1). Each residue is represented by a vertex,
v ∈ V , and each vertex carries a state space S(v), which is the set of
rotamers that can be placed at v.

We initially create a (hyper)edge for each vertex and each pair. We
assign each (hyper)edge e ∈ E a scoring function fe(S) that maps the states
chosen for its vertices to their interaction potentials: fe :

∏
v∈e S(v) → <.

Specifically, each vertex, v ∈ V , has a corresponding degree-1 hyperedge,
{v} ∈ E, with a hyperedge scoring function f{v}(Sv) = Eself (Sv). Each pair
of vertices, v1, v2 ∈ V , has a corresponding degree-2 hyperedge, {v1, v2} ∈
E, with a hyperedge scoring function f{v1,v2}(Sv1 , Sv2) = Epair (Sv1 , Sv2).

We can omit an edge e when fe is zero under all possible state assign-
ments to the vertices of e. To ignore small contributions, we can also omit
edges for which |fe| is always less than a chosen magnitude threshold, µ.
Figure 1a shows an interaction graph for ubiquitin design.

We denote a state assignment to all vertices by SV , and the induced as-

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

signment to any subset (particularly hyperedges) e by Se. Any assignment
induces a score for the interaction graph,

∑
e∈E fe(Se), and the optimal

assignment minimizes the score.

2.2. Dynamic Programming

A dynamic programming (DP) algorithm can optimize an interaction graph
by eliminating vertex v from the graph by solving for the optimal state of
v for all possible states of its neighbors, then replacing v with a hyperedge
containing these neighbors.

Specifically, let Ev be the set of hyperedges that contain v, and Nv =⋃
e∈Ev

e\{v} be the neighbors of v. If Nv is not already a hyperedge, create
Nv with an initial scoring function fNv

= 0. Next, add to fNv
the scoring

functions of Ev with the best assignment to v, and eliminate v and edges Ev

from the hypergraph. Let f̂e,v=s denote the function whose domain is the
states of Nv obtained from fe by restricting the state of v to be s ∈ S(v).
Then we can write fNv

= mins∈S(v)

∑
e∈Ev

f̂e,v=s. Also record v’s optimal
state as a function of its neighbors’ states for later retrieval.

The scoring function for Nv now represents the simultaneous interaction
of the vertices of Nv with the optimal state of v. The minimum score for
this reduced interaction graph is the same as the score of the original. Each
function is represented in a multi-dimensional table; the table dimensional-
ity is the degree of its corresponding hyperedge. Computing fNv amounts
to filling all cells in the table representing it.

We can reduce a graph to a single vertex by repeated elimination; Fig-
ure 1 illustrates the first two vertex eliminations. Once we have the optimal
state of this remaining vertex, we can trace back the optimal states for elim-
inated vertices by reading off their optimal states in the reverse order of
their elimination.

a b c d

Figure 1. Interaction graph reduction. The edges in (a) are drawn as curves
encircling the vertices they contain in (b). The DP algorithm eliminates the
upper-left vertex of (b) and updates the existing degree-2 hyperedge (c). It creates
a degree-3 hyperedge as it eliminates the next vertex (d).

In the remainder of this subsection we give upper bounds on the running
time and memory for an interaction graph with n vertices. If we assume

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

at most s states per vertex, and at most w neighbors at each elimination,
then DP runs in O(nsw+1) time and uses O(nsw) space.

The parameter w is known as the treewidth9 of the interaction graph.
Our algorithm shows that side chain placement is another instance of an
NP-Hard problem with a polynomial time solution for graphs of bounded
treewidth.

To define treewidth, we first define the tree decomposition of a hyper-
graph G = {V,E} as a tree with T whose vertices {X1, X2, . . . , Xm} rep-
resent subsets of V that satisfy the following three properties:

(1) The union of sets
⋃

1≤i≤m Xi = V .
(2) Each edge e ∈ E is in some set: e ⊆ Xi for some 1 ≤ i ≤ m.
(3) Each vertex v ∈ V occupies a connected part of tree T : for any Xj

on a path in T from Xi to Xk, the intersection Xi ∩Xk ⊆ Xj .

The treewidth of a tree decomposition is maxi |Xi|−1. The treewidth of
a graph G is the minimum treewidth over all possible tree decompositions of
G. Figure 2b illustrates a treewidth-3 tree decomposition of the interaction
graph in Fig. 2a.

a b

Figure 2. Tree decomposition. The tree in (b) is a tree-decomposition of the
labeled graph in (a). Each tree node contains the vertex label set, Xi.

To show that bounded-treewidth interaction graphs yield polynomial
time optimization, we convert a tree decomposition into a canonical form,
which will then specify the elimination order for the vertices of the graph.

Lemma 2.1. A tree decomposition T with treewidth w of the graph G can
be converted into a rooted tree decomposition with treewidth w in which the
vertex sets Xi satisfy |Xi \Xj | = 1 whenever Xj is the parent of Xi.

Proof. We give a constructive proof. Begin by choosing an arbitrary node
of T as the root. Now, consider any node Xi and parent Xj for which
|Xi \ Xj | 6= 1. If |Xi \ Xj | = 0, then delete Xi and connect any children
of Xi to the parent Xj . Otherwise take one vertex from the set difference,
v ∈ Xi\Xj , and create a new node, Y = (Xi∩Xj)∪{v} between Xi and Xj .

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

Node Xi now has the desired property. Tree T is still a tree decomposition:
the first two properties for tree decompositions hold trivially, and the third
property holds because (Xi ∩Xj) = (Xi ∩ Y ∩Xj). The treewidth of the
new decomposition is still w since |Y | < |Xi| ≤ (w+1). Recurse on Y until
the desired property holds.

Now, a depth-first traversal of a rooted, canonical tree decomposition
gives an order for vertex elimination: Reaching a node, write down the
one vertex in the set difference between it and its parent. At the root, r,
write down the vertices of Xr in any order. Because each vertex appears
in a connected part of the tree, each vertex is written down once, and the
recorded list of vertices provides the elimination order.

Theorem 2.1. For an interaction graph G on n vertices with at most s

states per vertex and a tree decomposition T of treewidth w, we can compute
the optimum state assignment in O(nsw+1 + wn) time and O(nsw + wn)
space by dynamic programming.

Proof. The O(wn) terms come from the time and space to construct and
use the canonical tree decomposition. To bound the running time of DP,
we use induction on the number of nodes eliminated so far. Before elimi-
nating node v, we assert that G is the interaction graph that results from
having eliminated the vertices up to vertex v, and that the canonical tree
decomposition T that we maintain is a tree decomposition of treewidth w

for G. If no vertices before v have been eliminated, then our assertion is
trivially true. Vertex v was chosen for elimination because it was contained
in a leaf node Xi of T , but not in the parent of Xi. If Xi was the root, then
Xi has fewer than w +1 nodes, and we may apply brute force optimization
in O(sw+1) time. Otherwise, let Xj be Xi’s parent. By definition of the
canonical tree decomposition, {v} = Xi \Xj . Therefore v is adjacent to at
most w vertices, and we can record the best state for v for each assignment
to these vertices in O(sw+1) time and O(sw) space. The hyperedge that
v’s elimination produces is a subset of Xj , so we can delete Xi from T to
obtain a tree decomposition of G after the elimination of v. Since each
vertex is eliminated once, the theorem is established.

Although computing the treewidth of a graph is NP-hard, the inter-
action graphs we have observed are small enough that we can make low-
treewidth tree decompositions by hand or by heuristics and feed them as
input to our algorithm.

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

2.3. The Move Towards Large Rotamer Libraries

The analysis of the DP algorithm shows that it is principally limited by
two parameters: the number of states per node, s, which can be in the tens
to the thousands, and the treewidth, w, which is fixed by the interaction
graph and where we have only tried problems when it was between three
to five. Since the number of vertices n is in the tens for a redesign problem,
we seek to reduce the impact of increasing s. How and why does s increase?

Large rotamer libraries are typically cousins of the canonical rotamer
libraries,5,15 obtained by sampling around the canonical rotamers. Specif-
ically, rotamers are usually defined as particular values of χ dihedral an-
gles for side chains of amino acids. A large rotamer library might expand
the canonical leucine rotamer represented by χ angles (60, 180) into many
samples inside the box (60 ± 5, 180 ± 10). The canonical rotamers rep-
resent the bottoms of shallow energy wells for side chain conformations;
the large rotamer libraries sample these wells. We can therefore organize
our rotamer libraries as a set of base-rotamers (boxes) which contain many
sub-rotamers (points): we denote the sub-rotamers of a base-rotamer b by
subscripts b1, b2, . . .

Protein designers have found that large rotamer libraries produce better
designs. The improvement can be attributed to the high penalty assigned
to colliding atoms. The Lennard-Jones “6-12” potential suggests a larger
rotamer library: the 1

d12 repulsive term is sensitive to small changes when
d is small, and slight flexes of the χ dihedrals resolve some high penalty
collisions. The remaining terms of the energy functions are less sensitive:
electrostatic interaction, for instance, is a function of 1

d . Thus, for rotamers
that are not near each other, we hope to represent many sub-rotamer in-
teractions by a single base-rotamer interaction. We formalize this idea by
defining the concept of stiff rotamer interactions.

2.4. Stiff Interactions

An assignment of base-rotamers, a, b, to the adjacent vertices u and v is
stiff in {u, v} ∈ E if any sub-rotamers ai, aj and bk, bl satisfy

|f{u,v}(ai, bk)− f{u,v}(aj , bl)| > ε.

If a base-rotamer interaction fails to exceed the stiffness threshold, then
we will approximate the energy between pairs of sub-rotamers by the en-
ergy between the canonical rotamers and ε will bound the error in this
approximation.

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

Our analogy is with stiff differential equations: the stiff interactions are
those where the energy is rapidly changing over a collection of sub-rotamers.
As adaptive schemes for numerical integration increase their temporal res-
olution when their input ODEs become stiff, and decrease their resolution
when the ODEs behave smoothly, our algorithm increases its spatial res-
olution when it encounters stiff base-rotamer combinations, examining all
possible sub-rotamer combinations, and decreases its resolution for non-stiff
base-rotamer combinations.

2.5. Adaptive Dynamic Programming

In adaptive dynamic programming, each vertex carries two levels of state
spaces. At the top level is the base-state state space, L(v), and each base-
state b ∈ L(v) carries a sub-state state space, H(b). The hyperedge scoring
functions are defined as a mapping fe :

∏
v∈e L(v) → (

∏
b∈B H(b) → <)

where B, a base state assignment to the vertices in e, is the input argument
to the outer function. For each edge e and each base-state assignment B,
we maintain a stiffness descriptor, CB

e which is a family of subsets of B.
Let CB

e,k ⊆ B represent the kth element of CB
e where 1 ≤ k ≤ |CB

e |.
Alongside the stiffness descriptor, we define the set of all stiff base-states
in an assignment, UB

e =
⋃|CB

e |
k=1 CB

e,k.
If e is an input hyperedge {u, v} under the base-state assignment {a, b},

the stiffness descriptor is either C
{a,b}
{u,v} = {{a, b}} if a and b’s interaction is

stiff or {{}} otherwise. A hyperedge created over the course of the reduction
corresponds to an eliminated vertex; the stiffness descriptors for such a
hyperedge correspond to the stiffnesses that existed with the optimal states
of the eliminated vertex.

The elimination of vertex v with incident edges Ev leaves behind a
hyperedge Nv containing v’s former neighbors. We will describe the stiffness
descriptor for a single base-state assignment, B, to the vertices of Nv.
Define the stiffly-interacting base-states of a single base-state of v, b ∈ L(v)
to be T

(B,b)
Ev

= ∪e∈EvU
(B,b)e
e − b where (B, b)e represents the base-states

assigned to the vertices e contains. Let PB represent the power set of B,
where if |Nv| = d then |PB | = 2d, and let PB

i be the ith member of PB
i .

Let LP B
i

(v) be {b | T
(B,b)
Ev

= PB
i }, that is, the set of all base-states of v

which have the same stiffly-interacting base-states of PB
i .

Let f̂e((B, b)e)v=s denote the function whose domain is the sub-states of
Nv under the base-state assignment B obtained from fe((B, b)e) by restrict-
ing v to sub-state s. Then for each i with a non-empty LP B

i
(v), compute

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

the function fP B
i

:
∏

b∈P B
i
H(b) → < so that

fP B
i

= min
b∈L

P B
i

(v)
min

s∈H(b)

∑
e∈Ev

f̂e((B, b)e)v=s

We represent the range of fP B
i

by [bestP B
i

. . .worstP B
i

]. We define the
best-worst score as mini worstP B

i
and define the set of competing stiffnesses

as I = {i | bestP B
i

< best-worst}.
Now, there is a natural partial order based on the subset property for

power sets. We use this partial order to define a maximal family of sets to
be any where no element in the family is a subset of any other. Given a
family of sets, P we define maximal(P) to be the function which returns
the maximal family produced by throwing out any set if it is a subset of any
other. The stiffness descriptor CB

Nv
will be assigned maximal({PB

i | i ∈ I}).
Let the set Ik, corresponding to CB

Nv,k, represent {i | PB
i ⊆ CB

Nv,k}. Then
we define a set of functions, fCB

Nv,k
= mini∈Ik

fP B
i

. Then the hyperedge
scoring function with the state assignment B can be defined as fNv

(B) =
mink fCB

Nv,k
.

Where we represented each hyperedge scoring function before as a multi-
dimensional table, we now represent each function as multi-resolution multi-
dimensional table: a table of tables. The top level table has an entry for
each base-state assignment to the vertices the edge contains. In each entry
resides a set of tables holding the fCB

Nv,k
functions. Each table requires∏

b∈CB
Nv,k

|H(b)| space. The smaller tables reduce the memory required by
the adaptive algorithm compared to standard dynamic programming.

2.6. Irresolvable Collisions

With a final parameter, τ , we define a pair of base-rotamers b and c to be
in an irresolvable collision if

¬∃i,jEpair(bi, cj) < τ

While some pairs of base-rotamers can resolve their collisions by slight
dihedral flexes, others cannot. As long as we have hope that a collision-free
placement of side chains exists, we need not examine the colliding pairs.

Within the DP framework, this means we may avoid calculating the best
state of a vertex for any combination of neighbors’s base-states that put
them in an irresolvable collision. Since the 1

d12 collision term is fluctuating
wildly, irresolvable collisions will meet our stiff interaction threshold, ε, and
we would wastefully treat them at high resolution if we did not ignore them.

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

2.7. Error Analysis

Theorem 2.2. The score induced by the adaptive algorithm’s state assign-
ment SV is within 2ε|E2| of the global optimum score where |E2| is the
number of degree-2 hyperedges in the input interaction graph.

Proof. Let σSV
be the energy of the adaptive algorithm’s state assignment

and σopt be the global minimum energy. Now, in selecting a sub-state of
some base-state and representing it’s interaction energy with another base-
state non-stiffly, the algorithm can misrepresent the energy by at most ε.
On one hand, this may decrease the apparent score of the state assignment
SV while on the other increasing the apparent score of the global optimal
state. Over the course of the optimization, the algorithm may misrepresent
at most |E2| non-stiff interactions, so the apparent score of SV may decrease
to σSV

− ε|E2| and the apparent score of the optimal state may increase to
σopt + ε|E2|. Because the algorithm chose SV , we know

σSV
− ε|E2| ≤ σopt + ε|E2|

and thus σSV
− σopt ≤ 2ε|E2|.

3. Results

We tested our algorithm at the rotamer relaxation task and the redesign
task. For both tasks, we selected 15 surface residues from ubiquitin’s β-
sheet, pictured in Fig. 3a. We excluded the following amino acids to
keep the treewidth of our interaction graphs low: arginine, lysine, and
methionine.

a b c d

Figure 3. Ubiquitin’s β-sheet. The β-sheet in (a) is flattened in (b) with it’s 15
surface residues shown. We observed the treewidth-4 interaction graph in (c) by
including edges between residues if any pair of rotamers ever interacted with an
energy magnitude at least µ = 0.2 kcal/mol. We artificially created the treewidth-3
interaction graph in (d) by dropping a single edge.

For the rotamer relaxation task, we first created 100 sequences for the
ubiquitin backbone, asking the design module of the Rosetta molecular

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

modeling program11 to stochastically redesign these 15 surface residues.
We then evaluated Rosetta’s experimentally validated energy function12 be-
tween all pairs of sub-rotamers, and included hyperedges that met our inter-
action magnitude threshold µ = 0.2 kcal/mol. This produced a treewidth-4
interaction graph, shown in Fig. 3c. We set our irresolvable collision cut-
off to τ = 1 kcal/mol. We compared the standard DP algorithm against
the adaptive algorithm with ε values of 0, 10−4, 10−3, 10−2, 0.1, and 1.0.
Against DP, we compared the time a single Rosetta SA design required and
scores it produced.

In the relaxation problem, the average residue had 32 total rotamers,
breaking down into 3 base-states and 10 sub-states per base-state. The
median state space size was ∼ 1018. We measured performance on a dual 2
GHz AMD Athlon with 2 GB RAM. In Fig. 4 we plot the relative running
time of the adaptive and standard DP algorithms against the actual error
observed. In table 1, we present the actual running times. Except for
three instances, SA produced the optimal answer when run for as long as
standard DP.

Table 1. Average running time comparison, in milliseconds, at the ro-
tamer relaxation task.

Run Time DP ε = 0 10−4 10−3 10−2 0.1 1.0 SA

Mean 206.2 63.7 62.9 63.0 61.2 17.5 6.4 65.1
Median 117.3 53.7 53.2 53.7 50.7 11.3 4.8 65.0

Std Dev 399.3 49.1 48.6 48.9 48.8 38.2 7.6 6.5

Figure 4. Rotamer relaxation task. Increasing ε to as high as 1.0 kcal/mol gives
a theoretical error bound of ± 64 kcal/mol but actually preserves accuracy and
greatly decreases running time.

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

For the redesign task, we artificially imposed a treewidth-3 interaction
graph on the problem, pictured in figure 3d. This interaction graph differs
by a single edge from the graph in 3c. The absence of this edge decreases
the quality of the design. We none the less include the task as it pushes
the DP algorithm’s limits.

Each residue in the design problem averaged 680 total rotamers. This
broke down into about 57 base-rotamers per residue and 12 sub-rotamers
per base-rotamer. The size of the state space was ∼ 1042. We measured
the performance of both the standard and the adaptive DP algorithms on a
dual 900 MHz 64-bit Itanium-2 with 10 GB of RAM. We compared against
a single SA run on the 2 GHz Athlon. In table 2 we present the results.

Table 2. Redesign task performance comparison.

DP ε = 0.1 ε = 1.0 SA

Run Time 15.99 hrs. 5.07 hrs. 1.52 hrs. 3.42 seconds

Memory Usage 3.7 GB 3.4 GB 1.5 GB 0.2 GB

Score (kcal / mol) -42.5893 -42.5893 -42.5579 -42.5692
Error (kcal / mol) 0.0000 0.0314 0.0201

4. Discussion

We have presented a novel application of our DP algorithm, and an improve-
ment upon it that begins to make it competitive. DP offers an alternative
to DEE and branch-and-bound for finding the global optimal solution in the
side chain placement problem. The other algorithms are designed to solve
a very difficult problem; the generic interaction graph implied by energy
expression (1) is fully connected. Distant amino acids, however, have inter-
action energies of zero, so the interaction graphs we encounter are sparsely
connected. Actual instances of the side chain placement problem may not
require algorithms as generic as DEE and branch-and-bound.

We were surprised to observe the small error for high values of ε. None
of our experiments with ε > 10−2 produced an error near the theoretical
bound we proved in Sec. 2.7. When we set ε as high as 1 kcal/mol, we
limit our high resolution focus to only those sometimes-colliding pairs of
base-rotamers. It is possible that in general the interactions in the global
optimal solution induces are either very stiff or almost totally insensitive
to small change; rotamers will either pack tightly or are far apart. It is
also possible that the non-canonical rotamers’ internal strain prevents their
selection except in the instances of collision resolution. By representing
base-state interactions with the canonical rotamer interaction energies, we
would introduce error only for the non-stiff interactions induced alongside

September 23, 2004 0:18 Proceedings Trim Size: 9in x 6in adaptiveDPpsb˙v12

a resolved collision—the resolved collision itself would be modeled stiffly.

5. Future Work

We have allowed our adaptive algorithm only two spatial resolutions: high
or low. We want to heirarchically group rotamers with varying resolutions
dictated by the sub-rotamer energy range. This would let us make tighter
theoretical bounds while hopefully preserving our performance gains. More-
over, we want to treat some states at even lower resolution. If two base-
rotamers for a residue reached away from the vertex v being eliminated
so that their interaction energies with the rotamers of v were the same,
we could treat these two base-rotamers as one and reduce the redundant
computations.

We would also like to incorporate partial dynamic programming into a
simulated annealing algorithm. We can decrease the problem complexity
if we allow DP to eliminate all degree-1 and -2 vertices. This fixes the
eliminated vertices in their optimal states. We expect this adaptation will
produce better designs.

Acknowledgements

This research was partially funded by NSF grant 0076984.

References

1. R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.
2. B. I. Dahiyat and S. L. Mayo. Science, 278 82, (1997).
3. J. R. Desjarlais and T. M. Handel. Prot. Sci., 4 2006, (1995).
4. J. Desmet, M. D. Maeyer, B. Hazes, and I. Lasters. Nature, 356 539, (1992).
5. R. L. Dunbrack. Jr. Curr. Opin. Struct. Biol., 12 431, (2002).
6. O. Eriksson, Y. Zhou, and A. Elofsson. In WABI’01, 128, (2001).
7. D. B. Gordon and S. L. Mayo. Structure 7 1089, (1999).
8. L. Holm and C. Sander. Proteins, 14(2):213, (1992).
9. T. Kloks. Treewidth: computations and approximations. Springer, (1994).

10. P. Koehl and M. Delarue. J Mol Biol, 239(2) 249, (1994).
11. B. Kuhlman, and D. Baker. Proc Natl Acad Sci USA, 97 10383, (2000).
12. B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D.

Baker. Science, 302 1364, (2003).
13. A. Leaver-Fay, Y. Liu, and J. Snoeyink. In ALENEX’04, (2004).
14. L. L. Looger and H. W. Hellinga. J Mol Biol, 307(1) 429, (2001).
15. S. C. Lovell, J. M. Word, J. S. Richardson, and D. C. Richardson. Proteins,

40 389, (2000).
16. J. G. Saven and P. G. Wolynes. J. Phys. Chem. B, 101 8375, (1997).

