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Some genes produce transcripts that function directly in regulatory, catalytic, or
structural roles in the cell. These non-coding RNAs are prevalent in all living
organisms, and methods that aid the understanding of their functional roles are

essential. RNA secondary structure, the pattern of base-pairing, contains the crit-
ical information for determining the three dimensional structure and function of
the molecule. In this work we examine whether the basic geometric and topolog-

ical properties of secondary structure are sufficient to distinguish between RNA
families in a learning framework. First, we develop a labeled dual graph represen-

tation of RNA secondary structure by adding biologically meaningful labels to the

dual graphs proposed by Gan et al [1]. Next, we define a similarity measure di-
rectly on the labeled dual graphs using the recently developed marginalized kernels

[2]. Using this similarity measure, we were able to train Support Vector Machine
classifiers to distinguish RNAs of known families from random RNAs with similar

statistics. For 22 of the 25 families tested, the classifier achieved better than 70%

accuracy, with much higher accuracy rates for some families. Training a set of clas-
sifiers to automatically assign family labels to RNAs using a one vs. all multi-class
scheme also yielded encouraging results. From these initial learning experiments,

we suggest that the labeled dual graph representation, together with kernel machine
methods, has potential for use in automated analysis and classification of unchar-

acterized RNA molecules or efficient genome-wide screens for RNA molecules from

existing families.

∗to whom correspondence should be addressed.



September 22, 2004 21:22 Proceedings Trim Size: 9in x 6in psb2004

1. Introduction

Non-coding RNA (ncRNA) molecules are those RNAs that do not encode
proteins, but instead serve some other function in the cell [3]. They play a
variety of critical roles and are ubiquitous in all kingdoms of life [4]. The
function of non-coding RNAs is uniquely determined by the three dimen-
sional structure of the molecule. To reach its functional form, a single
stranded RNA molecule undergoes folding – driven by GC/AU/GU base-
pairing and stacking interactions – to form short helices and various single
stranded loop regions that define its secondary structure [5]. Some RNAs
require metals or proteins to chaperone the folding process, but for the
most part, the final three dimensional structure, and hence the functional
role, is fully determined by the secondary structure [6]. This suggests that
development of computational tools based on RNA secondary structure is
essential for discovery of new non-coding RNAs and classification of their
functional roles.

A variety of computational methods have used the secondary structure
of RNA molecules to search and categorize ncRNAs, but many of these
methods are limited in their use of secondary structure. Regular-expression-
like pattern matching algorithms have been used to scan genome sequences
for regions that fold into the canonical structures of specific families [7].
However, they are designed to match stringent configurations of secondary
structure elements, and therefore perform poorly on families with varia-
tions in folding. Pair Stochastic Context Free Grammars (P-SCFG) look
for evidence of secondary structure conservation by modeling covariance
of mutations from related genomes [8] – but determining an appropriate
grammar is a non-trivial problem [9]. Some discriminative classifiers use
secondary structure stability as an input feature to distinguish non-coding
RNAs from intergenic sequence [10], but they ignore important topological
information. On the other hand, methods that use computable representa-
tions of secondary structure, such as trees and graphs, have been restricted
to categorization and enumeration of gross topological features [11, 1].

Here we present a kernel-based machine learning method for classify-
ing RNA families that avoids some of these limitations by learning directly
from a graphical representation of secondary structure. This discriminative
method does not require the estimation of any parameters or training of
cumbersome generative models, yet it captures some of the topological rela-
tionships of RNA secondary structures. First, we define an appropriate rep-
resentation of RNA secondary structure by extending the RNA dual graph
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representation [1] with a biologically relevant labeling scheme. Second, we
define a similarity measure between RNA secondary structures by applying
the recently developed marginalized kernel [2] to compare RNA molecules
represented as labeled dual graphs. We tested the ability of this method to
learn non-coding RNA structure by training Support Vector Machine [12]
classifiers to distinguish known ncRNAs from random RNA sequences with
similar nucleotide statistics. We also tested whether this approach can pick
up on and generalize from structural features that distinguish non-coding
RNA families.

2. An Algorithm for Classification Based on Secondary
Structure Topology

Classification of RNA secondary structures with Support Vector Machines
(SVMs) requires both a representation that captures the secondary struc-
ture and a kernel function that provides a reasonable similarity measure
for the chosen representation. Below we present a graph representation of
RNA secondary structure, the labeled dual graph, and show how it captures
the basic structural features of the molecule. We then describe a method
for applying kernel functions to the labeled dual graphs.

2.1. Labeled Dual Graphs

Given a secondary structure of an RNA molecule (see Figure 1A for ex-
amples), we want to construct a graph that captures essential properties
of the structure. The dual graph [1] is a concise representation that cap-
tures basic topological properties of the folded RNA molecule, such as the
number and relative position of the helical regions. In this representation,
helical regions of the RNA are represented as vertices of a graph, while sin-
gle RNA strands that connect the helical regions are edges. Thus, internal
loops, bulges, and multi-loops become edges that connect vertices (helices
adjacent to the loops), and external loops become edges from a vertex to
itself. The result is a multigraph – up to two edges may connect a pair of
vertices when a bulge or an internal loop separates two helical regions –
that excludes the free 5’ and 3’ ends and ignores the directionality of the
molecule, but captures its basic topology.

We augment the graph representation by adding labels that correspond
to the length and type of secondary structure elements. The resulting la-
beled dual graphs (LDGs) are comprised of vertices labeled according to the
number of nucleotide-pairs in the helical region they represent, and edges
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labeled according to the length (in number of nucleotides) and type (inter-
nal/external) of the loop they represent. See Figure 1B for an illustration
of labeled dual graphs.

2.2. Marginalized Kernels for Labeled Dual Graphs

In order to use an SVM classifier on graph objects, we need a kernel func-
tion to define a similarity between two labeled dual graphs. Several kernels
for graph objects have been proposed [13, 2]; here we use the recently devel-
oped marginalized kernel for labeled graphs [2] because it is relatively simple
to implement, computationally efficient, and yielded promising results. In-
tuitively, this kernel function computes a similarity measure between two
arbitrary labeled graphs by comparing the label sequences produced by
taking random walks on each of the two graphs; the more similar the sets
of label sequences, the higher the similarity score for the pair of graphs.

The computation of the kernel function between two graphs G and G′

proceeds as follows. First, generate a random walk h on graph G and a walk
h′ on graph G′, according to some defined probability of transitioning from
vertex to vertex. Each walk produces a sequence of vertex and edge labels,
z = {v1, e12, v2, e23, v3, . . .} and z′ = {v′

1, e
′
12, v

′
2, e

′
23, v

′
3, . . .} (see Figure 1C

for an example). Next, define the label sequence kernel Kz(z, z′) as the
product of the vertex label kernels Kv(v, v′) and the edge label kernels
Ke(e, e′) over the sequence of labels,

Kz(z, z′) = Kv(v1, v
′
1)Ke(e12, e

′
12)Kv(v2, v

′
2) . . . . (1)

If the two walks are of different lengths, we define the label sequence kernel
to be 0. Now that a similarity measure Kz(z, z′) is defined for each pair
of walks, the value of the full graph kernel K(G, G′) is computed as the
expected value of Kz(z, z′) over all possible walks h and h′, weighted by
the probability of generating the walks,

K(G, G′) = 〈Kz(z, z′)〉h,h′ . (2)

The probability of taking a random walk on a graph, p(h, h′) depends on the
probability of starting at a particular vertex and transitioning to subsequent
vertices. We assumed a uniform starting probability over all vertices, a
uniform probability of transitioning from a vertex to one of its neighbors,
and a constant probability (0.1) of terminating the walk after any step.

Finally, we need to specify the edge and the vertex kernel functions,
Ke(., .), Kv(., .). These should reflect the similarities in RNA structural
motifs – similar helices should produce high similarity scores, as should
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Figure 1. (A) Secondary structure diagram and (B) labeled dual graph (LDG) repre-
sentation of 5S rRNA (left) and tRNA (right) molecules. In the LDG, the numbers and

ordered pairs are the vertex (helix) and edge (loop) labels, respectively. The labels E and
I are used to distinguish external from internal loops. (C) A subset of label sequences

generated by taking random walks on the two graphs. Here L refers to the length of the
path. (D) An example of the label sequence kernel and its output, as it is applied to the
highlighted pair of paths in (C). The full kernel between the two graphs is computed as
the expected value of the path kernels over all possible pairs of walks.
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comparable loops. The choice of biophysical parameters that can serve as
the basis for similarity comparisons is large – base composition, sequence or
structural alignment, feature lengths, among others. As a first step we chose
edge and vertex kernels that reflect the most basic structural parameters:
the number of nucleotides that comprise a secondary structure motif. The
vertices and edges of the dual graphs are labeled with these distances, and
the vertex and edge kernels are defined as the Gaussian distance on the
log-ratio of the two labels (lengths). This choice of kernel means that,
compared to a particular structural element, elements twice its length or
half its length score similarly, and that the similarity measure drops off
smoothly as the ratio of the lengths deviates from 1. The vertex kernel is
thus defined as

Kv(vi, vj) = exp(−λ2
ij) , (3)

where λij = log(vi/vj). For two edges of the same type of loop (internal or
external), the edge kernel is similarly defined,

Ke(eij , ekl) = exp(−λ2
ij,kl) , (4)

and for edges of different types, the edge kernel is 0. See Figure 1D for an
illustrative example.

Effectively, two labeled dual graphs are considered similar when the
two sets of all possible walks on each graph are similar. The similarity
between individual walks is calculated as a product of simple functions
defined on their constituent labels. Thus, if all the vertex and edge labels
in the two walks match up, the output of the kernel function on the two
walks will be high; and if many of the walks on the two graphs are similar,
the kernel function will return a high value (with maxK(G, G′) = 1) for
the two graph objects. Hence this computation captures some topological
relationships between structural elements of RNA secondary structure.

3. Methods

We performed two sets of experiments to test the ability of the classifier
to learn RNA secondary structure and predict RNA family labels. First
we trained SVM classifiers to distinguish non-coding RNAs from random
RNAs with similar di-nucleotide composition. We also trained a system of
multi-class SVMs to determine the family labels of RNA sequences.

Single family classification was tested on a number of RNA families
from the RFAM database [14] (see the Results section for the list of tested
RFAM families). When possible, we trained and tested the classifier on 500
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RNA sequences, randomly selected from all RNAs in the family. However,
some RFAM families contained fewer sequences, in which case all were
used for classification. The negative data set was constructed by shuffling
the nucleotide sequences of the positive data set while preserving the di-
nucleotide frequencies (see [15] for methods), which destroys characteristic
secondary structure but produces random RNAs with sequence statistics
similar to real RNA.

RNA sequences were converted to secondary structures with the Vienna
RNA [16] folding prediction package, then converted to labeled dual graphs
as described above. We implemented the kernel computation using an it-
erative method described in [2]; one thousand kernel computations took
between 2 and 40 seconds on a desktop machine (2GHz Athlon), depending
on the average complexity of the secondary structure. SVM classification
was performed with 10 fold cross validation, with the precision parameter
set to 10000. We assessed classifier performance with sensitivity and speci-
ficity measures and by computing the area under the Receiver Operating
Characteristic (ROC) curve, a general measure of the discrimination ability
[17].

We also trained a multiclass classifier on nine large RFAM families using
the one vs. all method, a simple and frequently used approach to multi-
class classification [18]. In this method, a separate classifier is trained to
distinguish each class from the remaining ones. During classification, a test
sample (in this case an RNA sequence) is tested against each of the trained
classifiers, and a label assigned according to the classifier that produced the
highest decision value.

In this experiment, we grouped together several related RNA families
in order to have a sufficient number of sequences in each class for training
and testing (see Results for details). We assessed performance with the
generalized class sensitivity and class specificity measures [19]. For each
classifier, the class sensitivity (QD) represents the percentage of samples
correctly predicted relative to the total number of samples in that family,
while the class specificity (QM ) captures the number of samples correctly
predicted relative to the total number of samples predicted to be in that
family.
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4. Results

4.1. Single Family SVM

Figure 2 shows the results of SVM classifiers trained to identify individual
RFAM families. For sufficient training data we used only families with 50
or more sequences. The generation of negative training data is described in
the previous section. The classifiers showed good performance for a large
number of families, with AROC > 0.7 for 22 of 25 families tested. This sug-
gests that the learning method is useful for learning a variety of secondary
structure topologies. A notable result is the good classifier performance on
several riboswitch and microRNA families, two particularly exciting non-
coding RNA classes that have recently been shown to be involved in novel
mechanisms for regulating gene expression.

4.2. Multi-class SVM

Table 1 shows the cross validation results of the one vs. all multi-class
SVM trained on nine RFAM families. The MICRO and RNASE groups
represent aggregates of functionally related individual RFAM families (see
the caption for details). Again, classifier sensitivity and specificity were
good over a range of families, although specificity clearly degraded for RNA
families with larger molecules and possibly more complicated secondary
structures. In these instances, it is possible that shorter walks pick up
spurious similarities.

5. Discussion

The method presented here was able to learn to distinguish a number of
non-coding RNA families; however, it is worth highlighting a few factors
that may have adversely impacted its performance. First and most im-
portant is the reliance of the algorithm on accurate secondary structure
prediction. Because the classifier uses solely secondary structure as input,
it is sensitive to incorrectly predicted structures. As an example, training
and testing a classifier on tRNAs for which correct folding was manually
verified increased the accuracy from 89% to 98% (AROC). Nevertheless,
because the kernel computation considers local paths over the entire struc-
tures, parts of the molecule that are correctly folded will still contribute to
the correct computation of the kernel, even if some parts of the molecule
are mis-folded. More accurate folding algorithms will likely improve the
performance of this classifier. Alternatively, we can incorporate the con-
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U1 [250] 0.68 68.4 59.2

5_8S_rRNA [500] 0.73 66.1 67.7

U7 [180] 0.79 69.4 71.7

tmRNA [110] 0.79 74.5 65.5

SECIS [80] 0.79 72.8 73.4

U5 [95] 0.80 72.6 69.5

RRE [65] 0.83 76.9 80.0

U2 [210] 0.83 77.9 73.9

5S_rRNA [500] 0.84 79.3 73.5

U6 [500] 0.85 82.1 72.4

Histone3 [125] 0.87 86.6 91.9

SRP_euk_arch [75] 0.87 82.4 72.4

Cobalamin [155] 0.87 77.3 73.1

tRNA [500] 0.89 82.6 81.4

Y [500] 0.89 82.9 80.3

Intron_gpI [500] 0.90 87.5 76.7

THI [200] 0.91 84.5 78.5

T−box [200] 0.91 89.1 77.3

RFN [65] 0.93 84.6 80.0

S_box [85] 0.94 85.9 88.2

Intron_gpII [500] 0.94 92.2 86.3

SSU_rRNA_5 [500] 0.95 92.2 81.9

SRP_bact [85] 0.96 88.4 89.3

RNaseP_bact_a [225] 0.99 98.7 92.4

Family [#seqs] ROC area under curve Sensitivity Specificity

1.00.0

Figure 2. Performance of SVM classifiers trained on single RFAM families vs. shuffled

sequences with the same di-nucleotide composition. Area under the ROC curve (AROC)
is computed as the mean of the areas for each ROC curve of the 10 cross validation trials;

error bars are standard deviation of AROC .

fidence in the secondary structure prediction into the learning algorithm,
or even use the set of predicted suboptimal structures provided by folding
algorithms as input to the classifier.

As a representation of RNA secondary structure, the labeled dual graph
captures the basic features of the molecule: the number and length of
helical regions and their relative position. However, some of the structural
information is not represented. For example, the natural 5’-3’ directionality
of the molecule, the lengths of free 5’ and 3’ strands, as well as more complex
topological features such as chirality. Much of this information could be
included with natural extensions to the labeling scheme.

The computation of similarity between graphs (implemented with the
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Table 1. Contingency table showing results for 10 fold cross validation of one vs. all

multi-class SVM. For each RNA family (table row), the number of RNAs classified as

a certain family appears in the respective column. QD and QM refer to generalized
sensitivity and specificity, respectively. If zij is an element in the contingency table,

then QD
i = zii∑

j zij
and QM

j = zjj∑
i zij

. Several functionally related small RFAM fam-

ilies were grouped together to form aggregate families, MICRO: let-7, lin-4, mir-1,
mir-10, mir-101, mir-103, mir-124, mir-130, mir-135, mir-148, mir-156, mir-16, mir-160,

mir-166, mir-17, mir-181, mir-19, mir-192, mir-194, mir-196, mir-199, mir-2, mir-218,

mir-219, mir-24, mir-26, mir-29, mir-30, mir-46, mir-6, mir-7, mir-8, mir-9; and
RNASE: RNaseP bact a, RNaseP bact b, RNaseP nuc, RNase MRP, and these were

trained and tested as single classes.
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Histone3 123 0 0 0 0 0 1 3 0 .97

Intron gpI 0 355 82 1 18 33 1 5 5 0.71
Intron gpII 0 27 443 0 5 7 6 9 3 0.89

MICRO 0 3 2 165 0 0 1 1 8 0.92
RNASE 0 26 5 1 251 52 0 3 3 0.74

SSU rRNA 0 17 0 0 5 474 0 1 3 0.95

tRNA 0 16 8 4 8 27 370 33 26 0.75
U6 0 17 4 0 4 25 10 409 31 0.82
Y 0 32 3 4 11 31 14 30 375 0.75

QM 1.0 0.72 0.81 0.94 0.83 0.73 0.92 0.83 0.83

marginalized kernels) is also an imperfect measure. It does not account
for relative position of helical regions, it is sensitive to bulges in helical
regions, and it ignores global features such as the number of helices and the
size of the molecule. Some of these might not be critical for discriminating
ncRNAs – we tried a variant of LDGs that ignores bulges and observed
no improvement in performance – but others should be incorporated into
the representation and the kernel computation. Finally, the parameters
used for computing the marginalized kernels also have an impact on the
kernel output. For larger walks the random walk transition probabilities
affect the relative contributions of local or global structural features to
the similarity measure. Instead of adapting these parameters for optimal
performance, we simply chose a set of sensible values, and it is possible that
performance can be improved by adjusting these parameters. In order to
address these concerns, it will be essential to look at exactly what aspects of
the representation and the kernel allow the algorithm to learn to distinguish
ncRNAs and to generalize to new structures. This will help us understand
where and why it succeeds, and which aspects require improvement, and
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would also suggest areas of application for which this method is particularly
suited.

6. Conclusion

We have presented a novel, simple, and computationally efficient approach
for learning RNA secondary structures that requires no tuning of parame-
ters and can be applied to a wide range of learning problems. It uses graph
representations of folded RNA structures and kernels defined on graph ob-
jects to train SVM classifiers. Applied to non-coding RNAs from the RFAM
database, the method gave promising results. It could distinguish many
families from random RNA sequences with identical di-nucleotide compo-
sition, and showed some ability to differentiate one family from another.
Because this conceptually simple approach produced relatively accurate
classifiers, and because no other automated discriminative method for clas-
sification or discovery of ncRNA families exists, we believe there is great
potential for extending this method or combining it with other techniques.
Specific applications could include automated class-discovery of unchar-
acterized RNA molecules and computationally efficient heuristic filters in
conjunction with other methods for RNA family prediction.
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