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An important area of research in pharmacogenomics is to relate high-dimensional
genetic or genomic data to various clinical phenotypes of patients. Due to large
variability in time to certain clinical event among patients, studying possibly cen-
sored survival phenotypes can be more informative than treating the phenotypes as
categorical variables. In this paper, we develop a threshold gradient descent (TGD)
method for the Cox model to select genes that are relevant to patients’ survival
and to build a predictive model for the risk of a future patient. The computational
difficulty associated with the estimation in the high-dimensional and low-sample
size settings can be efficiently solved by the gradient descent iterations. Results
from application to real data set on predicting survival after chemotherapy for pa-
tients with diffuse large B-cell lymphoma demonstrate that the proposed method
can be used for identifying important genes that are related to time to death due
to cancer and for building a parsimonious model for predicting the survival of fu-
ture patients. The TGD based Cox regression gives better predictive performance
than the L2 penalized regression and can select more relevant genes than the L1

penalized regression.

1. Introduction

With the sequencing of the human genome near completion and with the
development of high-throughput technologies, we are now able to obtain
information about an individual’s entire genome or the entire genomic pro-
files of a tumor. Very high-dimensional genetic and genomic data are being
generated in pharmaceutical industries and in biomedical and clinical re-
search. Examples of high-throughput data include whole genome wide SNP
data, microarray-based gene expression data and proteomic data. Tradi-
tional environmental risk factors such as diet, age and lifestyle can influ-

∗This work is supported by NIH grantES09911



September 9, 2004 17:28 Proceedings Trim Size: 9in x 6in gui

ence a person’s response to treatments, it is believed that understanding an
individual’s genetic makeup or individual tumor’s genomic profiles would
provide the key for explaining such variation and for creating personal-
ized drugs with greater efficacy and safety. For example, with the DNA
microarray technology, one can simultaneously measure expression profiles
for thousands of genes in cancer tissues, which offers the possibility of a
powerful, genome-wide approach to the genetic basis of different types of
tumors. Recent studies 1,2 have demonstrated great succuss in predicting
cancer class using the gene expression data. Different classes of cancer may
correspond to different clinical outcomes of a given treatment. In addition,
studies also demonstrated that additional predictive power can be obtained
by incorporating genomic information in addition to the traditional predic-
tive factors such as tumor grades, sizes and stages 2.

In pharmacogenomics, an important area of research is to relate the
high-dimensional genetic, genomic or proteomic data to various phenotypes
such as continuous drug response levels, response to treatment which can
be categorical or censored clinical outcomes such as time to cancer recur-
rence or death after treatment. Due to large variability in time to can-
cer recurrence among cancer patients, studying possibly censored survival
phenotypes can be more informative than treating the phenotypes as bi-
nary or categorical variables. Since the follow up time is limited, some
patients’ exact survival time can’t be measured. For those patients, we
only have their right censored survival time. The emphasis of this paper
is to develop methods for predicting patient’s time to clinical event using
high-dimensional genetic or genomic data.

The most popular method in regression analysis for censored survival
data is the Cox regression model 3. However, due to the very high di-
mensional space of the predictors, e.g., the genes with expression levels
measured by microarray experiments, the standard maximum Cox partial
likelihood method cannot be applied directly to obtain parameter estimates.
There are mainly two solutions to this problem. One approach is based on
dimension deduction such as singular value decomposition (SVD) or the
partial Cox egression (PCR) 4. The other approach is to use the penalized
partial likelihood. This includes L2 and L1 penalization. Li and Luan 5

was the first to investigate the L2 penalized estimation of the Cox model
in the high-dimensional low-sample size settings and applied their method
to relate the gene expression profile to survival data. As pointed out by Li
and Luan 5, one limitation of L2 penalization is that it uses all the genes
in the prediction and does not provide a way of selecting relevant genes.
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An alternative is to use the L1 penalized estimation, which was proposed
by Tibshirani 6 and was called the least absolute shrinkage and selection
operator (Lasso). Using newly developed least angle regression (LARS) by
Efron et al. 7, Gui and Li 8 proposed an efficient way to estimate L1 pe-
nalized Cox regression model, which was called the LARS-Lasso procedure.
One limitation of the LARS-Lasso procedure is that the number of genes
selected cannot be greater than the sample size. In addition, if there is
a group of variables among which the pair-wise correlations are very high,
the LARS-Lasso procedure tends to select only one variable from the group.
This could be a potential limitation when the goal is to select all important
genetic or genomic features which are related to the risk of a clinical event.

Friedman and Popescu 9 have recently proposed a stepwise optimization
method called threshold gradient descent (TGD) and have demonstrated it
application in linear regression and classification problems. They showed
that with different threshold value, TGD can approximate the estimates
of partial least square, ridge regression, Lasso and LARS. The TGD based
methods provide a data-driven approach for selecting the penalty function.
Friedman and Popescu 9 further demonstrated that with small threshold,
the TGD method approximates the PLS or ridge estimates and has better
predictive power for data simulated with small variability in true coeffi-
cients. On the other hand, the TGD with large threshold value can ap-
proximate the Lasso or LARS estimates, which provide better predictive
performance when there is high variability of the coefficients. In this paper,
we extend the TGD method to censored survival data and to the Cox re-
gression model. We demonstrate the method by analyzing a real data set of
diffuse large B-cell lymphoma (DLBCL) survival times and gene expression
levels 2. Finally, we give a brief discussion of the methods and conclusions.

2. Statistical Models and Methods

2.1. Cox proportional hazards model

Suppose that we have a sample size of n from which to estimate the
relationship between the survival time and the genetic/genomic profiles
such as the gene expression levels X1, · · · , Xp of p genes. Due to cen-
soring, for i = 1, · · · , n, the ith datum in the sample is denoted by
(ti, δi, xi1, xi2, · · · , xip), where δi is the censoring indicator and ti is the sur-
vival time if δi = 1 or censoring time if δi = 0, and xi = {xi1, xi2, · · · , xip}′
is the vector of the genetic/genomic profiles of p genes for the ith sample.
Our aim is to build the following Cox regression model for the hazard of
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cancer recurrence or death at time t

λ(t) = λ0(t) exp(β1X1 + β2X2 + · · ·+ βpXp)

= λ0(t) exp(β
′
X), (1)

where λ0(t) is an unspecified baseline hazard function, β = {β1, · · · , βp}
is the vector of the regression coefficients, and X = {X1, · · · , Xp} is the
vector of genetic/genomic profiles with the corresponding sample values of
xi = {xi1, · · · , xip} for the ith sample. We define f(X) = β

′
X to be the

linear risk score function.
Based on the available sample data, the Cox’s partial likelihood 3 can

be written as

PL(β) =
∏

k∈D

exp(β
′
xk)∑

j∈Rk
exp(β′xj)

,

where D is the set of indices of the events (e.g., deaths) and Rk denotes
the set of indices of the individuals at risk at time tk − 0. Our goal is
to find the coefficient vector β which minimizes the negative log partial
likelihood function. However, in the settings when p >> n, there is no
unique solution to this optimization problem. In addition, one expects the
high variability of the estimates based on different random samples drawn
from the population distribution. A common remedy is to regularize this
optimization problem by addition a penalty λP (β) to the negative partial
likelihood, i.e.,

β̂(λ) = argminβ{− log PL(β) + λP (β)}. (2)

Here the negative log partial likelihood is treated as a loss function l(β)
which we want to minimize. The most popular penalties include the L2

penalty where P (β) =
∑

β2
j and the L1 penalty where P (β) =

∑ |βj |.

2.2. The threshold gradient descent algorithm

As observed in Friedman and Popescu 9, for a given penalty function P (β),
the procedure represented by (2) produces a family of estimates, β̂(λ), each
is indexed by a particular value of the tuning parameter λ. This family lies
on a one-dimensional path of finite length in the p dimensional space of all
joint parameter values β. Model selection procedure such as cross-validation
(see next section) can be use for selecting a point (i.e., a λ parameter) on
that path. Different penalty P (β) therefore corresponds to different path.
To account for different possible true values of β, Friedman and Popescu 9
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further suggested a gradient directed path finding algorithm for estimating
β. Specifically, let l(β) = − log PL(β), η = Xβ, and define

µi = −∂l/∂ηi = δi − exp(ηi)
∑

k∈Ci

dk∑
j∈Rk

exp(ηj)
,

where Ci = {k : i ∈ Rk} denotes the risk sets containing individual i and dk

is the number of events at time tk. Then µ = (µ1, · · · , µn) is the negative
gradient of the loss function with respective to {η1, · · · , ηn}. The negative
gradient with respective to β is therefore g = −∂l/∂β = Xµ. Starting from
β̂ = 0, the gradient directed paths can be updated as

β̂(ν + ∆ν) = β̂(ν) + ∆νh(ν),

where ∆ν > 0 is an infinitesimal increment and h(ν) is the direction in
the parameter space tangent to the path evaluated at β̂(ν). This tangent
vector at each step represents a descent direction. In order to direct the
path towards parameter points with diverse values, Friedman and Popescu 9

suggested to define h(ν) as

h(ν) = {hj(ν)}p
1 = {fj(ν).gj(ν)}p

1,

where

fj(ν) = I[|gj(ν)| ≥ τ ·max1≤k≤p|gk(ν)|],
where I[.] is an indicator function, and 0 ≤ τ ≤ 1 is a threshold parameter
that regulates the diversity of the values of fj(ν); larger values of τ lead to
more diversity 9. g(ν) is the negative gradient evaluated at β = β̂(ν).

For any threshold value 0 ≤ τ ≤ 1 , the threshold gradient decent path
finding algorithm for the Cox model involves the following five steps,

(1) Set β(0) = 0, ν = 0.
(2) Calculate η, µ, g(ν) = −∂l/∂β for the current β.
(3) Calculate fj(ν) = I[|gj(ν)| ≥ τ ·max1≤k≤p|gk(ν)|]
(4) Update β(ν +4ν) = β(ν) +4ν · g(ν) · f(ν), ν = ν +4ν.
(5) Repeat 2-4. Cross validation (see next section) is then employed to

determine a point on the path (ν) and to terminate the iterations.

2.3. Model selection through the cross validated partial

likelihood

For a given gradient threshold τ , to determine the value of the tuning
parameter ν in the final model, one can choose ν which minimizes the
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cross-validated partial likelihood (CVPL), which is defined as

CV PL(ν) = − 1
n

n∑

i=1

[l(f̂ (−i)(ν)− l(−i)(f̂ (−i)(ν)],

where f̂ (−i)(ν) is the estimate of the score function based on the threshold
gradient descent with tuning parameter ν from the data without the ith
subject. The terms l(f) and l(−i)(f) are the log partial likelihoods with all
the subjects and without the ith subject, respectively. The optimal value of
ν is chosen to maximize the sum of the contributions of each subject to the
log partial likelihood. When the threshold τ is unknown, we can perform a
two-dimensional parameter search using CVPL for τ and ν simultaneously.

3. Application to prediction of survival time of patients
with DLBCL

To demonstrate the utility of the TGD based Cox regression in relating
genomic data to censored survival phenotypes, we re-analyzed a recently
published data set of DLBCL by Rosenwald et al. 2. This data set includes
a total of 240 patients with DLBCL, including 138 patient deaths during
the followups with median death time of 2.8 years. Rosenwald et al. divided
the 240 patients into a training set of 160 patients and a validation set or
test set of 80 patients and built a multivariate Cox model. The variables in
the Cox model included the average gene expression levels of smaller sets
of genes in four different gene expression signatures together with the gene
expression level of BMP6. It should be noted that in order to select the gene
expression signatures, they performed a hierarchical clustering analysis for
genes across all the samples (including both test and training samples). In
order to compare our results with those in Rosenwald et al., we used the
same training and test data sets in our analysis. In this data set, the gene
expression measurements of 7,399 genes (not unique since many genes were
spotted multiple times on the arrays) are available for analysis.

Table 1. Number of features selected for different threshold value τ

Threshold value (τ) 0.0 0.2 0.4 0.6 0.8 1.0

Number of non-zero coefficients 7399 1171 464 140 43 4

3.1. Effects of the threshold value τ

Table 1 shows for several threshold τ values, the number of coefficients
estimated to be non zero for the training set of 160 patients. For each
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threshold value τ , we obtain the optimal predictive point along the path
using a 10-fold CVPL. As expected, larger values of τ give rise to fewer
non-zero coefficient values, with only 4 out of 7399 features having any
influence on survival for τ = 1.0. Figure 1 shows the coefficient values
obtained for the DLBCL training data using threshold gradient descent
with threshold values τ = 0, 0.4, 0.6 and 1, sorted by the gene order in
the original data set of Rosenwald et al. All solutions produce relatively
large absolute coefficient values in similar regions, with larger values of τ

selecting fewer non-zero values within each one. In addition, we clearly
observed that smaller τ resulted in smaller absolute coefficients of all the
genes, and larger τ resulted in very different estimates of the coefficients
among all the genes.

3.2. Predictive performance

In order to assess how well the model predicts the outcome, we employ
the idea of time dependent receiver-operator characteristics (ROC) curve
for censored data and area under the curve (AUC) as our criteria. These
methods were recently developed by Heagerty et al. 10 in the context of the
medical diagnosis and were proposed as criteria for censored data regression
with microarray gene expression data 5,4. Note that larger AUC at time
t based on a score function f(X) indicates better predictability of time
to event at time t as measured by sensitivity and specificity evaluated at
time t. Figure 2 (a) shows the areas under the ROC curves for different
threshold values τ based on 10-fold cross-validation for the training data
set. This plot suggested that the model with τ = 0.4, 0.6 and 0.8 gave the
best predictive results as measured by the areas under the curves. Since the
model with τ = 0.8 includes fewer genes in the model, one should choose
this model for future prediction. Figure 2 (b) shows the areas under the
ROC curves based on the predicted scores for the patients in the testing
data set. This plot indicates that τ = 0.8 and τ = 1.0 gave almost the same
predictive performance, which implies that the DLBCL data set encourages
variability among the coefficients of different genes. The AUCs are between
0.66 and 0.68 in the first 10 years of followups, indicating a reasonable
predictive performance. In contrast, smaller values of τ , which correspond
approximately to L2 penalized estimation, gave much lower values of AUCs,
indicating worse predictive performance.

To further examine whether clinically relevant groups can be identified
by the model, we divided the patients in the test data into two groups based
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Figure 1. Coefficient values obtained for the DLBCL data using threshold gradient
descent with threshold values τ = 0, 0.4, 0.6 and 1, sorted by the gene order in the original
data set of Rosenwald et al. All solutions produce relatively large absolute coefficient
values in similar regions, with larger values of τ selecting fewer non-zero values within
each one.

on their estimated risk scores β
′
X in the Cox model (1) using the mean

score as a cutoff value. Figure 3 shows the Kaplan-Meier curves for the two
groups of patients, showing very significant difference (p-value=0.0004) in
overall survival between the high risk group (36 patients) and low risk
group (44 patients). Similar analysis was done using L2 penalization, less
significant difference was observed (p-value=0.003).

3.3. Genes identified

As shown previously, cross-validation analysis for the training data set sug-
gested that threshold value τ = 0.8 should result in better predictive perfor-



September 9, 2004 17:28 Proceedings Trim Size: 9in x 6in gui

Table 2. Genes that were identified to be related to the risk of death when τ = 0.8.

Gene ID Group Description

AA286871 tumor necrosis factor receptor superfamily, member 17
AI361763 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 2
AA213564 PS ribosomal protein S21
AA443696 PS ribosomal protein S21
AA714637 PS ribosomal protein S12
AA714637 PS ribosomal protein S12
AA837360 proapoptotic caspase adaptor protein
AA760674 COX15 homolog, cytochrome c oxidase assembly protein (yeast)
AI087048 interferon regulatory factor 4
W72411 tumor protein p63
H92332 MHC major histocompatibility complex, class II, DQ alpha 1
AA411017 MHC major histocompatibility complex, class II, DQ alpha 1
AA159668 MHC major histocompatibility complex, class II, DQ alpha 1
AA411017 MHC major histocompatibility complex, class II, DQ alpha 1
AA729055 MHC major histocompatibility complex, class II, DR alpha
AA032179 MHC major histocompatibility complex, class II, DR beta 5
AA714513 MHC major histocompatibility complex, class II, DR beta 5
AA729003 T-cell leukemia/lymphoma 1A
R97095 T-cell leukemia/lymphoma 1A
AA480985 GCB Weakly similar to germinal center expressed transcript
AA805575 GCB Weakly similar to A47224 thyroxine-binding globulin precursor
AA278822 Fc receptor-like protein 1
AA485725 immunoglobulin kappa constant
AA487453 PS GRO2 oncogene
AA598653 LNS osteoblast specific factor 2 (fasciclin I-like)
LC-29222 LNS
AA495985 LNS small inducible cytokine subfamily A (Cys-Cys), member 18
H98765 LNS cytochrome P450, subfamily XXVIIA, polypeptide 1
AA579913 LNS leukocyte immunoglobulin-like receptor, subfamily B, member 1
R62612 LNS fibronectin 1
X14420 LNS collagen, type III, alpha 1
W87899 aryl hydrocarbon receptor
AI370252 T cell receptor beta locus
AA147638 T cell receptor beta locus
AA147638 T cell receptor beta locus
N29376 myeloid cell nuclear differentiation antigen
AA833786 hemoglobin, alpha 2
W63749 B-cell CLL/lymphoma 2
AA495936 microsomal glutathione S-transferase
H44867 mal, T-cell differentiation protein
AA292532 regulator of G-protein signalling 16
AA804793 ESTs
AA243583 KIAA0084 protein

mance. For τ = 0.8, 43 non-unique genes have non-zero coefficients. Table
2 lists the gene IDs and their descriptions for these 43 genes. Note some
genes appear more than once due to replicates on arrays. These genes are
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Figure 2. ROC curves based on (a) the 10-fold cross validated scores based on the
training data set and (b) the estimated scores for the 80 patients in the testing data set
for different gradient threshold values τ .
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Figure 3. The Kaplan-Meier curves for the high and low risk groups defined by the
estimated scores for the 80 patients in the test data set.

related to the risk of death among the DLBCL patients. It is interesting
to note that many of these 43 genes belong to the four signature groups
defined by Rowsenald et al. using clustering analysis of genes. The four
groups are MHC class II (MHC), Proliferation signature (PF), Lymph node
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signature (LNS) and Germinal center B-cell signature (GCB). The genes in
these groups were shown to be related to the risk of death for the DLBCL
patients. The estimated coefficients for the genes in MHC, GCB and LNS
signature groups were all negative except for AA495985, indicating that
high expression levels of these genes reduce the risk of death among the pa-
tients with DLBCL. All the genes in the PF group have positive coefficients.
This agrees with what Rosenwald et al. (2002) has found. In addition, since
many genes were spotted several times on the arrays, it is interesting that
these genes were all selected as predictors. Other genes which do not be-
long to the four signature groups include T-cell receptor beta locus, T-cell
leukemia/lymphoma 1A and T-cell differentiation protein.

As a comparison, when τ = 1.0, only four genes (H92332, LC 29222,
AA480985, H98765) were selected by the model. These four genes belong
to three of the four signature groups and have large absolute coefficients.
This is in direct contrast with the genes selected by the TGD Cox regression
with τ = 0.8, where genes which are highly correlated were also selected.

4. Discussion and Conclusions

In pharmacogenomics, one important problem is to predict patient’s time to
cancer relapse or time to death due to cancer after treatment using genomic
profiles of the cancerous cells prior to the treatment. Powerful statistical
methods for such prediction allow for high-dimensional genomic data such
as microarray gene expression data to be used most efficiently. In this
paper, we have extended the threshold gradient descent based method 9

for censored survival data in order to identify important predictive genes
for survival using high throughput genetic or genomic data. Since the risk
of cancer recurrence or death due to cancer may result from the interplay
between many genes, methods which can utilize data of many genes, as in
the case of our proposed method, are expected to show better performance
in predicting risk. We have demonstrated the applicability of our methods
by analyzing time to death of the diffuse large B-cell lymphoma patients
and obtained satisfactory results, as evaluated by both applying the model
to the test data set and the time dependent ROC curves. Our simulations
also indicated better predictive performance of the proposed method than
other penalization methods (results not shown due to page limitation).

As we observed in our analysis of the DLBCL data set, if there is a group
of variables or genes among which the pairwise correlations are very high,
the procedure with τ = 1 tends to select only one variable from the group
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and does not care which one is selected. Such procedure, which is very
closely related to Lasso, can give a good predictive performance. However,
for genes sharing the same biological pathways, the correlations among
them can be high. If the goal is to select important and relevant genes,
one may want to include all these highly correlated genes, if one of them
is selected. We observed that the TGD procedure with τ = 0.8 precisely
achieved this goal. In addition, we may expect more robust prediction since
the gene expression levels of highly correlated genes are used in the model.
Therefore, in practice, one should use cross validation to select the optimal
threshold value τ .

Some possible extensions of the proposed methods are worth mention-
ing. One is to study the treatment effect adjusting for genetic or genomic
profiles. This can be done by including a treatment indicator variable in
the Cox regression model. However, regularization by threshold gradient is
only applied to the variables related the high-dimensional genomic profiles.
A profile-type penalization can then be developed. Another interesting
problem is to identify certain genetic profiles which may interact with the
treatment in determining the risk of certain clinical event. This can be
done by including all the treatment by gene interactions in the model and
using the threshold gradient descent method to select the relevant genes
and their interactions. Both approaches deserve further investigation.

In summary, the proposed threshold gradient descent method for the
Cox model can be very useful in pharmacogenomics in building a parsi-
monious predictive model of risk based on the genetic or genomic profiles.
The procedure is robust and numerically stable and can also be applied to
select important genes that are related to patients’ survival outcome.
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