
Enhancing Data Sharing in Collaborative Research Projects with DASH

T.E. Ferrin, C.C. Huang, D.M. Greenblatt, D. Stryke, K.M. Giacomini, and J.H. Morris

Pacific Symposium on Biocomputing 10:260-271(2005)

ENHANCING DATA SHARING IN COLLABORATIVE
RESEARCH PROJECTS WITH DASH

THOMAS E. FERRIN, CONRAD C. HUANG, DANIEL M. GREENBLATT,
DOUG STRYKE, KATHLEEN M. GIACOMINI, AND JOHN H. MORRIS

Departments of Pharmaceutical Chemistry and Biopharmaceutical Sciences University
of California San Francisco, 600 16th Avenue,

San Francisco, CA 94143, USA

We describe a software framework, called DASH, that enables the facile access,
maintenance, curation and sharing of computational biology data among collaborating
research scientists. The DASH event-based framework enables members of team-based
research projects to describe the multistep computational processing pipelines frequently
required to generate data for sharing, monitors multiple distributed data stores for
changes, and will then automatically invoke the appropriate processing pipeline(s).
These pipelines can be used to communicate the results of data analyses to collaborators
using mechanisms such as Web Services. We describe the overall design of the DASH
system and the application of a simple DASH prototype to a collaborative
pharmacogenomics research project involving several dozen researchers located at
several different sites—the UCSF Pharmacogenetics of Membrane Transporters project.

1. Introduction

In a collaborative, team-based research project, each group must be able to share
results with others and access data generated by others. Traditionally, this has
been done by exchanging data via electronic mail or file transfer. While a more
facile approach is to use a shared database, this often incurs the challenge of
properly maintaining data integrity in the presence of updates by multiple
researchers. For example, in a database used for computational biology, adding
and altering data may require the invocation of additional computational
protocols that automatically update all related—and especially derived—
information. When performed manually, this tedious curation process can act as
a deterrent, limiting either the number of participants or the growth of the
database, or even preventing a collaborative project from being realized in the
first place. While several technological solutions to support collaboration, such
as workflow and data integration, already exist, no single solution addresses the
needs of collaborative computational biology without a significant expenditure
of money or personnel. The goal of the project we describe here is to create a
system that enables the facile sharing of data, and is specifically targeted at
small- to medium-sized collaborative computational biology projects. We
believe this represents a very important class of collaborative science projects,
as was discussed at the “Models of Team Science” session [1] at last year’s
BECON 2003 Symposium on Catalyzing Team Science [2]. “Team science”

and the formation of integrated research networks are also common themes
within the NIH Roadmap Initiatives [3, 4], the success of which depends
crucially upon the sharing of research data. This fundamental need to efficiently
and effectively share research data provides the motivation for the DASH
project.

2. User Requirements

The core of collaborative science is the exchange of data among cooperating
research groups. However, before any sharing can occur, participants must first
agree on what data will be exchanged (e.g., experimental data, analysis results)
and how exchanges will happen (e.g., data format, transfer media). When only a
few data sets must be shared, data preparation may be done manually.
However, as the number and types of data sets increase, the shortcomings of
manual preparation, such as human error during processing and dependence on
vigilant monitoring of available data, can become serious hindrances to the
collaboration. Timely sharing of data becomes even more difficult if complex
and time-consuming manual manipulation of data is needed. For small- to
medium-sized academic laboratories, data preparation for collaborations can
prove to be quite challenging due to limited funding and staffing. Tools are
needed to help streamline data preparation and sharing by addressing the
requirements listed in Table 1.

Table 1. User requirements for managing data exchange with collaborators.

R1 Document data exchange protocol. Having protocol documentation will ease transitions

such as staff or student turnover, which is a particularly difficult problem for a small group
where the person leaving may also be the single person who handles all data preparation.

R2 Facilitate changes in protocol. In a lengthy collaboration, new types of data may be
acquired or analyzed over the course of the collaboration. As the data domain evolves, so
must the data exchange protocols.

R3 Support multiple collaborations. Multi-group collaborations are becoming more common as
larger and/or interdisciplinary scientific projects are being tackled. While the project groups
share the same goals, they may not share the same research tools. As part of a multi-group
collaboration, a lab must be able to prepare data in multiple formats to fit the needs of
multiple collaborators.

R4 Automate data manipulation. Automation removes the burden of repetitive activities from
users and helps minimize human errors. In addition, scaling up is much more feasible for an
automated system than a manual one. When preparing data for collaborations, automated
data manipulation protocols can also be used to facilitate internal data processing. Having a
single mechanism for initiating automated processes can simplify overall data management
for users.

R5 Control data access. Data sharing must not usurp the data owners’ ability to control how
data is published. In particular, sensitive data, e.g., patient information, are often used in
clinical research but must not be shared with all collaborators without careful consideration
and adherence to applicable regulations or restrictions. This implies that data owners are not
forced to store their data in a centralized repository or in a prescribed format.

3. The PMT Project

The UCSF Pharmacogenetics of Membrane Transporters project (PMT,
http://pharmacogenetics.ucsf.edu) [5] provides an excellent example of the type
of collaborative science
project that can benefit from
the DASH infrastructure. The
goal of the PMT project is to
understand the genetic basis
for variation in drug response
for drugs that interact with
membrane transport proteins.
Membrane transporters, a
major determinant of
pharmacokinetics, are of great
pharmacological importance. The UCSF PMT project, begun in April 2000,
involves more than 50 researchers from diverse disciplines, distributed across
19 labs at UCSF, UCLA, San Francisco General Hospital, and Kaiser
Foundation Hospitals. These investigators are systematically identifying
sequence variants in transporters and determining the functional significance of
these variants through evaluation of relevant cellular and clinical phenotypes.
Experimental results are deposited in the Pharmacogenetics Research Network
and Knowledge Base (PharmGKB, http://www.pharmgkb.org) [6], hosted at
Stanford University. The PMT is organized into four major components:

• Genomics Core Group (GCG), which is sequencing the DNA of 200
genes from several sample sets of more than 250 individuals;

• Cellular Phenotype Group (CPG), which determines the
pharmacological effects of single nucleotide polymorphisms (SNPs) in
cellular assays;

• Clinical Studies Group (CSG), which tests drug response in volunteer
human subjects with known genotypes; and

• Bioinformatics Core Group (BCG), which performs data analyses,
provides computing infrastructure to facilitate information exchange,
and exports results to the PharmGKB.

Figure 1 shows the flow of data within the PMT. GCG-BCG data

exchanges include trace files from DNA sequencers, per-sample single
nucleotide polymorphism sites and variants. Data from GCG to BCG are
uploaded to a shared network file system in Common Assembly File and

Pharmacogenetics
Network Database

Clinical Studies
Group

Bioinformatics
Core Group

Cellular Phenotype
Group

Genomics Core
Group

Figure 1. Components of the Pharmacogenetics of
Membrane Transporters project.

Standard Chromatogram File formats. BCG analyzes the uploaded experimental
data and makes the results available through the PMT intranet Web site
(password protected), either as Hypertext Markup Language (HTML) pages or
as a tab-separated-values plain text file suitable for importing into spreadsheets
and databases. With over 50 sequencing experiments completed and 150
proposed for the next five years, the timely analysis of data sets is critical to the
project. In addition to standard analyses such as Hardy-Weinberg equilibrium
of SNPs, other more speculative analyses are constantly being proposed and
tested. Leabman has recently published some of these “data mining” analyses
[7]. While the BCG has kept pace with the current volume of PMT data
primarily through use of manual approaches to data curation, automation tools
are needed to handle the planned increase in volume of data, as well as new
hypotheses-testing analyses, for the next five years.

4. Existing Technologies

Tools exist to address some of the requirements listed in Table 1. The four most
relevant technologies are workflow management, data integration, distributed
resource management, and event-based technologies.

Workflow management is a protocol-centric paradigm for controlling
activities within a system; data is often treated as auxiliary information attached
to process instances. There are many commercial [8-10] and open-source [11-
13] workflow management systems. Most provide central management of
workflows, where an analysis produces the initial workflow, which is then
revised under strict access control. However, the classic workflow paradigm
does not fit well in a collaborative science environment, where many
researchers need to be able to introduce new data and activities into a process
definition. Centralized control over workflow modification would introduce
unacceptable overhead (i.e., does not address requirement R2 in Table 1).
Additionally, many commercial workflow systems are devoted to streamlining
the execution of a series of manual activities. However, in a research
environment workflows are often data-driven or data-triggered, and updates can
be handled by automated activities rather than manually. With their focus on
manual activities, traditional workflow systems often do not handle requirement
R4 gracefully.

We have investigated both commercial and open-source workflow
solutions. The system that most nearly satisfies the requirements in Table 1 is
myGrid [11]. myGrid emphasizes the large-scale, geographically distributed e-
science environment, and is necessarily complex. The subset of myGrid’s
functionality most pertinent to our requirements is limited to three of these

components: an information repository, workflow enactor, and notification
service. However, there does not appear to be the level of functional integration
between these components necessary to support the kind of features outlined in
our requirements. While myGrid seems like a promising technology, it appears
to be overly complex for use in simple collaborations.

Data integration is data-centric; processing activities are not explicitly
included other than as clients that access the integrated data views. Thus,
requirements R1 and R2 are often not well addressed by data integration
products. It is also unclear whether the benefits of data integration outweigh its
cost. The volume of exchanged data in a research collaboration is typically low
compared with enterprise-level data stores. Frequently, a simple data transfer
and processing strategy is sufficient and does not incur the overhead of creating
and managing an integrated data view between collaborators.

Distributed Resource Management solutions, or DRMs, include workload
balancers and batch management systems like OpenPBS [14] and Platform
Computing’s Load Sharing Facility (LSF) [15], as well as grid solutions such as
the Globus Grid Toolkit [16]. While these systems are very useful for the
utilization of computational resources, they do not provide the capability to
define pipelines based on data availability or modification. These systems could
be used as part of a pipeline to distribute the computational task across multiple
nodes, but do not themselves meet the requirements discussed above.

Event-based technologies are commonly used in conjunction with user
interfaces and user-oriented systems [17, 18], but event-based approaches have
also been used for distributed systems [19-21]. All of these systems function in
a similar manner: events are generated in response to some action and are
processed by an event handler for that particular event. Event handlers may
generate additional events or might update files, database tables, or a user’s
display. Event-based approaches provide a firm foundation for building
computational pipelines by linking together various events, but with the
exception of Metis [22] have not been widely utilized for that purpose. Many of
the requirements defined in Table 1 are very data-centric, and it may not be
apparent to users how these can be met by the finer granularity event-based
approach. However, it should be noted that this approach offers a great deal of
promise due to its flexibility and adaptability.

While none of these approaches independently addresses all the
requirements in Table 1, based on our analysis we felt that designing DASH
using an event-based model offered the best tradeoff between functionality and
usability. Our approach to ameliorate the complexities of the event model was
to layer a data flow representation on top of the more granular event model.

5. Workflow within the PMT

The diagram on the left in Figure 2 is a high-level representation of the
workflow between two of the components in the PMT project. (See reference
[5] for a detailed description.) The PMT, with its complex interactions between
heterogeneous, distributed resources, well represents the many small- to
medium-sized collaborative science projects for which we have designed
DASH. In Figure 2, we identify a subsection (shaded) of the PMT processing
pipeline from which we isolated a simple data processing activity that generates
web pages from data files. From this existing process we extracted a simple,
two-staged pipeline. The image on the right illustrates this pipeline utilizing a
standard set of data flow diagram symbols adapted from the Gane and Sarson
method of process notation [23]. Using this PMT pipeline as an example, we
implemented a simple proof-of-concept prototype of DASH that monitors a file
or database table and triggers a protocol to run whenever the associated data
source changes. As depicted in Figure 2, this two-staged pipeline creates a web
page containing gene information anytime a new exons.fasta or geneinfo.xml
file appears.

GC Word
file of

reference
sequence

BC exon
sequence

Reference
sequence and
positions of
primers and

exon(s)

BC
CAF/SCF

files

Per sample
SNP data

GC ABI
trace files

BC gene
annotation

Gene/exon
web pages

GC
CAF/SCF

files

GC data
description

file

Arrow legend:
RefMap
SnpMap
SnpWeb

BC - Bioinformatics core
GC - Genomics core

exons.fasta
file geneinfo.xml

file

convert to
database form

exons.fasta
in db form

geneinfo.xml in
db form

generate web page
from db

HTML page containing
gene information

convert to
database form

Figure 2. Illustration of the pipeline constructed to automate data processing within the
Bioinformatics Core component of the PMT project. The shaded section on the left represents the
portion of PMT data processing encapsulated by the data flow diagram shown on the right. This
data flow is then used to automate the generation of web pages from source data.

6. The DASH Event Model

Science can be viewed as an event-driven process; the development of a new
hypothesis, availability of new data in a public database, or generation of
experimental results are all examples of important events in the scientific
research environment. Some of these events originate from human actors such
as fellow researchers, while others occur as the result of automated processes.
Each one of these events may warrant any number of follow-up actions:
experiments may need to be designed to test the hypothesis, automated protocols
could be invoked to process the novel data, or the laboratory results could be
compared against previous experiments. Note that any of these activities could,
in turn, generate more events that will require additional processing, and so on.
In general terms, this process consists of three core concepts: actions that
generate events, the events themselves and attached data, and handlers that
process events.

Even the simple pipeline shown in Figure 2 evokes some of the potential
complexity of automated data monitoring and processing. The two input
branches of the prototype pipeline run independently, each updating its own set
of database tables. An update to either table triggers the web page generation
protocol with sufficient data to produce a web page. The two inputs can be
thought of as having a Boolean OR relationship. Within the PMT, this is not
always the case; some data sources have a Boolean AND relationship. That is, a
step in the processing pipeline requires updated data from two or more data
sources before it can run. Therefore, a useful data automation system must also
handle a group of data sources having an AND relationship. These relationships
suggest the concept of data groups as opposed to individual sources. Taken to

Figure 3. Overview of components in DASH's event model.

Event Event
Dispatcher

Event
Handler

Invoke

Supplied
by DASH

Normally
supplied
by user

File System

Database

Other

File System

Database

socr:> ls
Lskdjflskjfdlkfj
lsdkjfdlj
Lskdjflsk jlksdjfls
kdj]l
Sldkjsldj

Processes

Time

Web Services

DASH Building
Block

Event Event
Handler

Output Event
Generator

the next level, this analysis implies the requirement of nested groups to support
arbitrarily complex data processing scenarios.

Figure 3 shows an overview of all of the components in the DASH event
model. The Event Dispatcher is a component of DASH that monitors Event
Generators for Events and subsequently dispatches these Events to their
respective handlers. The dotted line labeled “DASH Building Block”
encompasses one processing unit of the DASH event management architecture.

Figure 4a shows two event processing units. The role of an individual
event-processing unit is simple; an event arrives from DASH’s event dispatcher,
and the handler is invoked. This unit need not have any knowledge of where the
event came from, which other handlers may process the same event, or what
types of events may be generated as the result of the event handler invocation.
This restricted local view keeps the conceptual model simple, while providing a
high level of flexibility and applicability to known and unforeseen problem
domains.

The real power in this model comes from associating these simple event-
processing units. Associations between individual units are implicitly
established when events generated from the action of one unit’s event handler
are dispatched to the event handler of the second. DASH provides a registration
interface that allows users to specify what types of events each Event Generator
is capable of producing, as well as which Events should be dispatched to which
Handlers. The linking of processing units can result in complex relationships

Figure 4. (a) Building blocks of DASH's event model; (b) Several building blocks linked together
form a complex event processing pipeline.

Event
Handler

Event
Dispatcher

Event Event
Dispatcher

Event
Handler

Invoke Output Event
Dispatcher

Event Event
Handler

Invoke

Protocol 1 Protocol 2

Output

Event
Handler

Event
Dispatcher

Event
Handler

Event
Dispatcher

Event
Handler

Event
Dispatcher

Event
Handler

Event
Dispatcher

a

b

between multiple event generators and handlers, as illustrated by the branching
pipeline in Figure 4b.

7. The DASH Data Flow Layer

While events and handlers provide a sound foundation upon which to build,
from the researcher’s perspective it is advantageous to view the interactions in
terms of the more familiar concepts of data and processing protocols; these can
be represented using data flow notation. Figure 5a introduces a new view of the
DASH building block using data flow notation. Conceptually similar to the
event model building block introduced in Figure 3, this construct represents the
functional unit in the context of data flow. D1 represents a data store and P1 a
protocol that is invoked in response to changes in that data store. Within this
simple system, there is only one execution pattern: D1 is altered and P1 is
invoked to process the changed data.

These building blocks can be aggregated to form complex pipelines of data
and processing protocols, as shown in Figure 5b. While representing
relationships in terms of data and protocols (as opposed to events, generators,
and handlers) is more suitable for a data sharing application, the underlying
implementation still uses the event model to propagate changes throughout the
system. A change in data store E1 generates a data change event. Protocols P1
and P2 are registered as handlers for data change events in E1, and are invoked
by the event dispatcher to process the changed data. Similarly, the actions taken
by protocols P1 and P2 (e.g. writing
information into a database table) could
result in the generation of further data
change events from data stores D1 and D2,
respectively. This process of event
generation and event consumption thus

P1 D1

Figure 5a. Data flow building block.

E1 D3

D2

D1

E2
P5

P4

P3

P2

P1

Figure 5b. Complex data flow diagram using building blocks.

drives the propagation of data updates throughout a processing pipeline.
In the context of data flow, it is sometimes advantageous to process events

in an order different from that in which they are generated. Reordering event
processing enables DASH to maintain data integrity while optimizing use of
resources such as data access and processor time. The end result of this event-
processing model is to propagate all data updates throughout the system in the
most efficient manner possible while still maintaining an internally consistent
set of data. Events can be combined into a series which can then be optimized
to allow for the efficient processing of large volumes of data by running
protocols in parallel whenever possible.

Our DASH infrastructure, consisting of an underlying event model that is
optimized for efficiency and ease of use in a data-sharing context, addresses
several of the requirements given in Table 1. Using a preexisting body of
distributed data stores (R5) and heterogeneous processing protocols, DASH can
automate the propagation of updates through the system in order to provide a
consistent set of data for use in subsequent processing steps (R4), or for
consumption by collaborators or end-users (R3).

8. DASH Applied to the PMT

Figure 6 shows a page from the PMT Website generated using an expanded
version of the prototype described in
section 5 above. The text
accompanying the arrows gives the
source files for the data. The data
used to generate this single Web
page comes from at least five
different files—some of them in
XML format, others in fasta format,
and still others in plain text. Changes
in any of the source files will result
in the automatic regeneration of the
Web page by DASH.

9. Current Status

DASH is currently in the early
development stage. A simple
prototype has been implemented and
applied to the PMT project to obtain
the results described in this

Figure 6. Sample PMT web page containing
data about the exons of a transporter gene
and showing the data files used to generate
the HTML representation.

geneinfo.xml

exons.fasta
ReferenceMap.txt

CafSnpMap.txt

topo.xml

manuscript, and further implementation work is ongoing. As DASH becomes
more functional, our intent is to make the software available at no cost and in
documented source code form so that other research groups can directly benefit
from our work. Further information on DASH is available from
http://www.cgl.ucsf.edu/Research/DASH/.

10. Future Work

There are two areas that we will be focusing on for our future implementations
of DASH. The first of these is the development of a Web-based user interface
that will allow researchers to create, modify, and monitor DASH processing
pipelines. By enabling researchers to graphically manipulate active processing
pipeline components, we can address requirement R2. The ability to discover,
display, and print relationships among the processing pipelines of collaborating
researchers allows us to address requirement R1.

The second area for future work is the extension of DASH to cross
organizational boundaries. This often requires that the tools and libraries
support some form of distributed computing model. For DASH, distributed
computing will be supported through Web Services [24] interfaces. The use of
Web Services allows us to leverage the security mechanisms already supported
through web services technologies and provides a general interface between two
DASH instances running in different computing environments. Web Services
will also be used to support communication between DASH and other related
systems that support a Web Services interface. DASH will act as a Web
Services endpoint as well as a Web Services client. One additional use of Web
Services will be to export administrative information for the discovery and
status of DASH pipelines (bounded, of course, by security restrictions). This
will be used to present a broader view of processing pipelines across multiple
computing environments (addresses requirements R3 and R5).

Acknowledgments

The UCSF Pharmacogenetics of Membrane Transporters project is sponsored
by NIH grant U01 GM61390. Support for the DASH project comes from NIH
P41-RR01081.

References

1. Models of Team Science
(www.becon1.nih.gov/symposia_2003/BECON2003_sessionIV.ppt).

2. BECON 2003 Symposium on Catalyzing Team Science
(www.becon1.nih.gov/symposium2003.htm).

3. Zerhouni, E., The NIH Roadmap. Science, 2003. 203: p. 63-64,72.
4. NIH Roadmap Initiatives (http://nihroadmap.nih.gov/initiatives.asp).
5. Stryke, D., et al. SNP analysis and presentation in the Pharmacogenetics of

Membrane Transporters Project. in Pacific Symposium Biocomputing.
2003: World Scientific.

6. Hewett, M., et al., PharmGKB: the Pharmacogenetics Knowledge Base.
Nucleic Acids Res., 2002. 30(1): p. 163-165.

7. Leabman, M.K., et al., Natural variation in human membrane transporter
genes reveals evolutionary and functional constraints. Proc Natl Acad Sci
U S A, 2003. 100(10): p. 5896-901.

8. IBM Lotus Workflow (http://www.lotus.com/).
9. Oracle Workflow 11i (http://www.oracle.com/).
10. BEA Weblogic Integration (http://www.bea.com/framework.jsp).
11. Stevens, R.D., A.J. Robinson, and C.A. Goble, myGrid: personalised

bioinformatics on the information grid. Bioinformatics, 2003. 19 Suppl 1:
p. I302-I304.

12. Oinn, T., et al., Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 2004.

13. Vivtek Inc., wftk (Workflow Toolkit). 2003.
14. Portable Batch System (http://www.openpbs.org).
15. Platform LSF (http://www.platform.com/products/LSF/).
16. Foster, I. and C. Kesselman, Globus: A Metacomputing Infrastructure

Toolkit. International Journal of Supercomputer Applications, 1997. 11(2):
p. 115-128.

17. Document Object Model (DOM) Level 2 Events Specification
(http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/).

18. Jacob, R.J.K., L. Deligiannidis, and S. Morrison, A software model and
specification language for non-WIMP user interfaces. ACM Transactions
on Computer-Human Interaction (TOCHI), 1999. 6(1).

19. Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, Design and Evaluation of a
Wide-Area Event Notification Service. ACM Transactions on Computer
Systems, 2001. 19(3): p. 332-383.

20. Cugola, G., E. Di Nitto, and A. Fuggetta. Exploiting an event-based
infrastructure to develop complex distributed systems. in 20th international
conference on Software engineering. 1998.

21. Ben-Shaul, I.Z. and G.E. Kaiser. A paradigm for decentralized process
modeling and its realization in the Oz environment. in 16th international
conference on Software engineering. 1994.

22. Anderson, K.M., et al. Metis: Lightweight, Flexible, and Web-based
Workflow Services for Digital Libraries. in 2003 Joint Conference on
Digital Libraries. 2003. Houston, Texas: IEEE.

23. Gane, C.P. and T. Sarson, Structured Systems Analysis: Tools and
Techniques. 1979: Prentice Hall. 241.

24. Web Services Activity (http://www.w3.org/2002/ws/).

