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We present a method for inference of transcriptional modules from heterogeneous data 
sources. It allows identifying the responsible set of regulators in combination with their 
corresponding DNA recognition sites (motifs) and target genes. Our approach distinguishes 
itself from previous work in literature because it fully exploits the knowledge of three 
independently acquired data sources: ChIP-chip data; motif information as obtained by 
phylogenetic shadowing; and gene expression profiles obtained using microarray 
experiments. Moreover, these three data sources are dealt with in a new and fully integrated 
manner. By avoiding approaches that take the different data sources into account sequentially 
or iteratively, the transparency of the method and the interpretability of the results are 
ensured.  Using our method on biological data demonstrated the biological relevance of the 
inference. 

1 Introduction 

Nowadays, data representative of different cellular processes are being generated at 
large scale. Based on these omics data sources, the action of the regulatory network 
that underlies the organism’s behavior can be observed. 

Whereas until recently bioinformatics research was driven by the development 
of methods that deal with each of these data sources separately, the focus is now 
shifting drastically towards integrative approaches dealing with several data sources 
simultaneously. Indeed, technological and biological noise in the individual data 
sources is often so prohibitive and unavoidable that standard methods are bound to 
fail. Then only a combined use of heterogeneous and independently acquired 
information sources can help to solve the problem. Furthermore, these different 
points of view on the biological system allow gaining a holistic insight into the 
network studied. Therefore, the integration of heterogeneous data is an important, 
though non-trivial, challenge of current bioinformatics research. 

In this study we focus on 3 types of omics data that give independent 
information on the composition of transcriptional modules, the basic building 
blocks of transcriptional networks in the cell: ChIP-chip data (chromatin immuno-
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precipitation on arrays) provides information on the direct physical interaction 
between a regulator and the upstream regions of its target genes; motif information 
as obtained by phylogenetic shadowing describes the DNA recognition sites of 
these regulators; and gene expression profiles obtained using microarray 
experiments describe the expression behavior in the conditions tested. By 
integrating these three data sources, we aim at identifying the concerted action of 
regulators that elicit a characteristic expression profile in the conditions tested, the 
target genes of these regulators, and the DNA binding sites recognized by these 
regulators, thus fully specifying the relevant regulatory modules. 

Previous successful approaches to integrative analyses in bioinformatics can be 
found in the class of kernel methods [7,19] and methods based on graphical models 
[4,5,13,14,15]. Still, to our knowledge, no successful attempts to solve the problem 
of module inference exploiting all 3 independently acquired ChIP-chip, motif and 
expression data have been made so far. Furthermore, most existing approaches that 
exploit the availability of heterogeneous data sources proceed in a sequential or an 
iterative way (see e.g. [8] for simultaneous detection of motifs and clustering of 
expression data, e.g. [2] for an iterative approach using ChIP-chip and expression 
data, and e.g. [10] for simultaneous motif detection and analysis of ChIP-chip data). 

In this paper, we present an approach that is different in spirit from previous 
methods, taking the different data sources into account in a highly concurrent way. 
The performance of the algorithm was demonstrated using the Spellman dataset 
[16] as a benchmark. 

2 Materials and Algorithms 

2.1 Data Sources 

As microarray benchmark set the Spellman dataset was used [16], which contains 
77 experiments describing the dynamic changes of 6178 genes during the yeast cell 
cycle. The profiles were normalized (subtracting the mean of each profile and 
dividing by the standard deviation across the time points) and stored in a gene 
expression data matrix further denoted by A with a row for each gene expression 
profile and a column for each condition. 

Genome-wide location data performed by Lee et al. [9] were downloaded from 
http://web.wi.mit.edu/young/regulator_network. These contain data on the binding 
of 106 regulators to their respective target genes in rich medium. The ChIP-chip 
data matrix (further denoted by R) used in our study consists of one minus the p-
values obtained from combined ratio’s between immuno-precipitated and control 
DNA (see [9]). Thus, a large value (close to one) indicates that the regulator is 
probably present. 
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The motif data used in this study were obtained from a comparative genome 
analysis between distinct yeast species (phylogenetic shadowing) performed by 
Kellis et al. [6]. The authors describe the detection of 72 putative regulatory motifs 
in yeast. These motifs, available online as regular expressions, were transformed 
into the corresponding probabilistic representation (weight matrix): for each motif, 
the 20 Saccharomyces cerevisiae genes in which the motif was most reliably 
detected according to the scoring scheme of Kellis et al. [6] were selected. The 
intergenic sequences of these genes were subjected to motif detection based on 
Gibbs sampling [MotifSampler,18]. If the statistically overrepresented motif in this 
set of putatively co-expressed genes corresponded to the motif that was detected by 
the comparative motif search of [6] the motif model was retained. As such 53 of the 
71 motifs could be converted into a weight matrix. This weight matrix was 
subsequently used to screen all intergenic sequences for the presence of the 
respective regulatory motifs using MotifLocator [11]. Absolute scores were 
normalized [11]. As the score distribution of the motif hits depends on the motif 
length and the degree of conservation of the motif, the distribution of the 
normalized scores differs between motifs. Therefore, normalized scores were 
converted into percentile values. This allows for an unbiased choice of the 
thresholds on the motif quality parameter in the algorithm. The matrix containing 
these percentile values is the motif data matrix M that will be used in this work. 

2.2 Module Construction Algorithm 

The aim of the method is to find regulatory modules (which may be overlapping 
with each other), based on the gene expression, ChIP-chip, and Motif data matrices 
as specified above. 

A module is fully specified by the set of genes it regulates (denoted by an index 
set g, pointing to the relevant set of rows of R, M and A), in addition to the set of 
regulators (corresponding to the columns with indices in a set called r in the ChIP-
chip matrix R) and motifs (corresponding to the columns with indices m in the 
Motif matrix M) that are responsible for the regulation of these genes. The goal of 
our method is to come up with regulatory modules specified in this way, by fully 
exploiting the heterogeneous data sources available. 

We note that the principles behind the method developed here are based on 
ideas similar to those that laid the foundations for the Apriori algorithm, originally 
developed in the database community [1]. All implementations used in this paper 
have been done in matlab. 

 
Seed construction.  This is the main step of the algorithm, and allows the 
construction of a good guess (or seed) of the modules. The idealized goal of this 
step is to find a set of genes g, that have the same expression profile, and such that 
there exist sufficiently large sets of regulators r and of motifs m that are entirely 
present in all these genes. Since in practice it is not known exactly in which 
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intergenic regions a certain motif occurs or where a regulator binds, we have to 
resort to the score matrices R and M. Furthermore, the expression profiles A of 
genes in a module will only be approximately equal, and possibly only in a set of 
conditions, so we relax this constraint to requiring a strong correlation instead of 
equality between them. 

Formally, then the task to solve is: 
 

Find all maximal gene sets g for which there exist an r of size |r| ≥ rmin and a set 
m of size |m| ≥ mmin, such that the following 3 constraints are satisfied: 

1.  R(i,j) > tr     for all i∈g and j∈r 

2.  M(i,j) > tm     for all i∈g and j∈m 

3.  corr(A(i,:) , A(j,:)) > ta     for all i,j∈ g 

where rmin, mmin and thresholds tr , tm and ta are parameters of the method. 

 
Here, a maximal set g is defined as a set that cannot be extended with another gene 
without violating one or more of these constraints. In the following, we will use the 
term valid set for a gene set g that satisfies these constraints. 

Clearly it is computationally impossible to tackle this problem with a naive 
approach: the number of gene sets is exponentially large in the number of genes in 
the dataset, which is prohibitive even for the smallest genomes. However, it is 
trivial to verify that: 

Observation 1: When a gene set does not satisfy the constraints, none of its 
supersets satisfy the constraints. 

This means that we can build up the maximal sets incrementally, starting with valid 
sets of size one, and gradually expanding them. Concretely, the (already less naive) 
algorithm would then look like1: 

 

                                                           
1 Notationally, we will use Li to denote the list containing all valid gene sets with i 

genes. For an individual valid gene set we will use a bold face gk
i, with a 

superscript i to specify that it is an element of Li and thus contains i genes, and 
with a subscript k to distinguish it from the other gene sets in Li. The x-th gene in 
this gene set is denoted as gk(x), for brevity without superscript. 
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-  For all single genes, check if they satisfy constraints 1 and 2 (constraint 3 is 
trivially satisfied for singleton gene sets). Make a list L1 of all singleton 
gene sets that contain such a valid gene. 

- Set i = 2. 
- While size(Li-1) ≠ 0 

For k=1:size(Li-1), expand set gk
i-1 ={gk(1), gk(2), … , gk(i-1)} ∈ Li-1 once 

for each gene g that is not yet contained in gk
i-1. Put the thus 

expanded sets {gk(1), gk(2), … , gk(i-1), g} that satisfy the 3 
constraints (to be verified in R, M and A), in a list Li. 

Set i = i+1. 
 

Notice that following this strategy, a gene set can be constructed in different ways, 
by adding the genes to it in a different ordering (i.e. in different iterations i). This 
can be avoided by adding a gene to a gene set gk

i-1 only whenever its row number g 
is larger than that of all other genes already in gk

i-1. Thus for every gk
i={gk(1), gk(2), 

… , gk(i)} ∈ Li we always have that gk(x) < gk(y) for x < y. 
Additionally, in this way we can easily keep the list Li of gene sets gk

i sorted as 
well, where the sorting is carried out first according to the first added gene and last 
according to the last added gene. More formally: gk

i preceeds gl
i in Li if and only if 

gk(argminx(gk(x)≠gl(x))) < gl(argminx(gk(x)≠gl(x))) (this ordering of the list Li is 
indeed a total ordering relation.) 

Still the number of expanded gene sets can be huge in every iteration: each of 
the gene sets gk

i-1 in Li-1 must be expanded by all genes g>gk(i-1), after which the 
validity has to be checked by looking at the matrices R, M and A. This can still be 
too expensive. However, we can exploit the converse of Observation 1: 

Observation 2: Whenever a gene set satisfies the constraints, all of its subsets 
satisfy the constraints. 

Using this so-called hereditary property of the constraint set, in some cases we can 
conclude a priori i.e. without checking in R, M and A if an extended gene set 
of size i can possibly be valid or not: we simply have to check if all of its size i-1 
subsets belong to Li-1. Only if this is the case, we still have to access the data in R, 
M and A; if it is not the case, we know without further investigation that the 
extended subset is invalid. 

Specifically, assume that we expand the gene set gk
i-1={gk(1), gk(2), … , gk(i-2), 

gk(i-1)} ∈ Li-1 with g, leading to {gk(1), gk(2), … , gk(i-2), gk(i-1), g}. Then, since for 
a valid size i set each of its size i-1 subsets must be contained in Li-1, also {gk(1), 
gk(2), … , gk(i-2), g} must be contained in Li-1. In other words: there has to exist a 
gl

i-1={gl(1), gl(2), … , gl(i-2), gl(i-1)} ∈ Li-1 for which gk(x)=gl(x) for x≤i-2, and g= 
gl(i-1). This can efficiently be ensured constructively, by exploiting the fact that the 
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list Li-1, and all gk
i-1 themselves are sorted. Indeed, thanks to this, all gene sets gk

i-1 
that have the first i-2 genes in common occur consecutively in Li-1. Therefore, to 
expand gk

i-1 with an additional gene, we only have to screen the list Li-1 starting at 
gk+1

i-1 and move forward in Li-1 for as long as the first i-2 genes are equal to gk(1), 
gk(2),… and gk(i-2). For every gene set gl

i-1 screened in this way, read the last gene 
gl(i-1) and append it to gk

i-1, thus resulting in a candidate gene set of size i, 
potentially to be appended to Li. To find out whether this candidate gene set is valid 
indeed, one still has to check the constraints explicitly. However, thus 
constructively exploiting the hereditary property, the number of queries to R, M and 
A is drastically reduced. Note that this strategy also ensures that Li is sorted 
automatically. 

 
Module validation.  In some cases the first step described above is not sufficient 
for adequate module inference. There are three reasons for this: 

First, the seed construction method can be rather conservative in recruiting 
genes, since each of the genes in the module has to satisfy all 3 of the constraints. 
Therefore, in a second step, we calculate the mean of the expression profiles of the 
seed modules found in the first step, further called the seed profile. Then we can 
additionally recruit all genes with a high correlation with the seed profile to be 
incorporated in the module. In order to determine an optimal threshold value for this 
correlation, we compute the enrichment of each of the motifs and regulators in the 
genes that have an expression profile that achieves this threshold correlation with 
the seed profile. The logarithm of the p-value of the enrichment is then plotted as a 
function of this threshold (Figure (1)), and the threshold can be chosen such that this 
value is minimal. 

Second, sometimes it is undesirable to a priori decide how many motifs and 
regulators we want in the module, or it may be difficult to choose the thresholds tr, 
tm and ta (even though experiments show little dependence on these). Then one can 
first use the seed construction algorithm requiring only 1 regulator and motif, and 
with stringent thresholds, after which again the enrichment of all motifs and 
regulators can be plotted as a function of the correlation threshold with the mean 
profile of the seed module. For each such seed profile, the corresponding 
enrichment plot will visually hint at the number of motifs and regulators (namely 
the number of significantly enriched motifs and regulators).  

Third, similarly, the enrichment plot allows excluding false positive motifs or 
regulators: when they are selected in step 1, but appear not to be enriched in the 
validation step, they are considered as a false positives and discarded. 

To calculate the enrichment, we first calculate the mean score of the module for 
the particular motif or regulator. Note that the mean score of a module by random 
gene selection is approximately Gaussianly distributed (central limit theorem), with 
mean equal to the mean over all genes, and variance equal to the overall variance 
divided by the size of the module. Thus, we can calculate the enrichment as the 
logarithm of the p-value based on a Gaussian approximation. 
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Note that the p-values have been computed based on profiles that have been 
obtained from the data, such that they do not have a rigorous probabilistic 
interpretation here. Hence, we can only use them as explained above. 

2.3 Calculating Overrepresentation of Functional Classes 
Functional categories for each gene were obtained from MIPS [12]. Functional 
enrichment of the modules was calculated using the hypergeometric distribution 
[17], which assigns to each functional class a p-value. 
 

 
A 

  
 

B 

  
Figure 1: Two examples (panels A and B) of the module validation step for two seed profiles: on the left, 
the logarithms of the p-values (vertical axes) are plotted for all motifs as a function of the correlation 
threshold (horizontal axes). I.e. each line in the plot shows the p-values for the enrichment of its 
corresponding motif, as a function of the gene expression correlation threshold used. The right column 
shows similar plots for the regulators. Clearly panel A shows the results for a false positive prediction 
(module 6): the regulator (right figure) of the identified seed module turns out not to be significantly 
overrepresented in genes correlated with the seed profile.  In panel B the results are displayed for the 
positive example described in the text. 
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3 Results 

Cell cycle related modules.  To test the reliability of our method, we used the well-
studied Spellman dataset as benchmark. The analysis we performed using our two-
step algorithm is illustrated by elaborating on the detection of the cell cycle related 
module 1. Using the seed detection step we searched for modules of genes having at 
least 1 common motif (1M) in their intergenic sequences and 1 common regulator 
(1R) showing a small p-value in the ChIP-chip data, and of which the expression 
profiles were mutually correlated with a minimal correlation of 0.7. This seed 
identification step then predicts several potential modules, and for each of them a 
seed profile can be calculated. For each of these modules we performed the module 
validation step. 

Fig. 1A (right) shows how this validation step allows to detect that the regulator 
associated with this module is probably a false positive: when recruiting genes that 
correlate stronger than a certain threshold with the seed profile, it is not significantly 
enriched in the recruited gene set, no matter what the threshold is. 

In Fig 1B, using the parameter settings of 1M/1R, we identified a potential seed 
module containing regulator 98 (Swi4) and motif M_11 (known as a Swi4 motif). 
Calculating the statistical overrepresentation of all motifs and regulators in genes 
correlated with the seed profile of this putative module showed that in this subset of 
genes indeed M_11 and Swi4 were overrepresented. The identified module seed 
thus is likely to be biologically relevant. These results also show that besides Swi4 
and M_11, 3 additional motifs and regulators were overrepresented in subsets of 
genes correlated with the module seed profile, indicating the probable 
underestimation of the real module size. To verify whether these other 
regulators/motifs co-occur in the same subsets of genes and therefore comprise a 
larger module, we repeated the seed identification step using additional parameter 
settings (see Table 1 in the online supplement). From this result it appeared that we 
could recover a complete module consisting of the 3 overrepresented regulators 
(Mbp1, Swi4, Swi6) and 2 motifs (M_16, M_10) and that this module is present in 
genes displaying an expression profile that shows a correlation of at least 0.7 with 
the average seed profile. Checking the identities of the regulators and the motifs  
(regulators Mbp1, Swi4, Stb1 combined with the regulatory motifs Mbp1 (M_18, 
M_12) and Swi4 (M_11 and M67)) showed that we identified a previously 
extensively described regulatory module of the yeast cell cycle.  

Besides this first module, 3 additional related cell cycle (Table 1) modules 
could be retrieved. Additional information on each of the separate modules can be 
found in the online supplement. Genes in the different modules showed peak 
expressions shifted in time relative to each other, as shown in Figure 1 of the online 
supplement. All of the predicted modules are conform the previously described 
knowledge on the cell cycle [2,3,9]. 
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Table 1: Cell cycle related modules. Column ‘R’ contains the regulators, column ‘M’ the motifs, the 
column ‘Functional Class: p-value’ contains p-values for several functional classes, and the ‘Seed 
Profile’ column contains a plot with the expression profiles of the genes regulated by the module. 

R M Functional Class: p-value Seed Profile 

M
o
d
u
l
e
 
1 

Mbp1 
Swi6 
Swi4 
Stb1 

M_18 
(Mbp1)  
M_12 
(Mbp1) 
M_11 
(Swi4)  
M_67 
(Swi4) 

10 CELL CYCLE AND DNA 
PROCESSING: 0 
10.03 cell cycle: 2.7e-5  
10.01 DNA processing: 1.3e-4 
 
42.04 cytoskeleton: 4.2e-3 

 

M
o
d
u
l
e
 
2 

Swi4 
Mbp1 
Swi6 
FKH2 

M_18 
(Mbp1) 
M_12 
(Mbp1) 
M_11 
(Swi4) 
M_8 
(Mcm) 

40 CELL FATE: 5.2e-4 
40.01 cell growth / morphogenesis: 2.6e-3 
 
43 CELL TYPE DIFFERENTIATION: 5.2e-3
43.01 f ungal/microorganismic cell type 
differentiation: 5.2e-3 
 
34.11 cellular sensing and response:5.3e-3 
01.05.01 C-compound and carbohydrate 
utilization: 6.8e-3 
10.03.04.03 chromosome condensation: 9.4e-3  

M
o
d
u
l
e
 
3 

NDD1 
FKH2 
Mcm1 

M_8 
(Mcm) 
M_30 
(Mcm) 

43 CELL TYPE DIFFERENTIATION: 3.6e-3
43.01 fungal/microorganismic cell type 
differentiation: 3.6e-3  
 
10.03.03 cytokinesis (cell division) /septum 
formation: 4.8e-3 

 

M
o
d
u
l
e
 
4 

Swi5 
(Ace2) 

M_8 
(Mcm) 

32.01  stress response: 3.2e-3 
10.03  cell cycle: 8.7e-3 
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Non cell cycle related modules.  Besides the modules primarily involved in cell 
cycle, other modules could be identified in the Spellman dataset (see Table 2). 
Module 5, consisting of Fhl1, Rap1 and Yap5, involved in the regulation of 
ribosomal proteins was previously also identified [9]. Note that it was identified 
from a profile that does not change significantly and consistently with the cell 
cycles. By our analysis we could pinpoint motif M_54 [6], as the regulatory motif 
correlated with this regulatory module. A second non cell cycle related module 
consisted of the genes regulated by the motifs M_7 and M_3 (identified as ESR1 
and ESR2 [6]).  For this module, related to transcription and ribosomal RNA 
processing only the motifs seemed informative (see module 6 in Table 2, and Figure 
1A). 
 
Table 2: Non cell cycle related modules. 

 R M Functional Class: p-value Seed Profile 

M
o
d
u
l
e
 
5 

FKL1 
Yap5 
Rap1 

M_54 12 PROTEIN SYNTHESIS: 0 
12.01 ribosome biogenesis: 0 

 

M
o
d
u
l
e
 
6 

 / 

M_3 
(ESR1)  
 
M_7 
(ESR2)  

11 TRANSCRIPTION: 0.000002 
11.04 RNA processing: 0 
11.04.01 rRNA processing: 0 
 
 

 

4 Discussion  

We described a 2-step methodology combining ChIP-chip, motif and expression 
data to infer complete descriptions of transcriptional modules. The seed 
construction step predicts the putative modules consisting of regulators, their 
corresponding motifs and the elicited expression profile. The validation step filters 
false positive predictions and gives further insight into the module size. 
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The problem is attacked in a very direct way: the integration of the data sources 
is achieved in a one-shot-algorithm, and requires no iteration over the different data 
sources. While the running time was very reasonable for all experiments carried out 
for this paper, it heavily depends on the parameters. The more stringent they are set, 
the smaller the lists Li will be and the faster the algorithm will run. Further speed-
ups are possible, but not needed for the experiments reported in this paper (for all 
parameter setting used, it remained below 1 hour for the slowest step, which is the 
seed identification, on an intel pentium 2GHz laptop with 512Mb RAM). Therefore 
we will not go into these here.  

The Spellman dataset was used as a benchmark to test the performance of our 
method.  Since this dataset and the yeast cell cycle have extensively been studied 
before [2,9], it is ideally suited for testing the reliability and biological relevance of 
the predictions. We were able to reconstruct 4 important modules known to be 
involved in cell cycle and also 2 non cell cycle related modules without using any 
prior biological knowledge or prior data reduction. These results indicate that 
predictions passing the module validation step are likely to be biologically relevant 
(no false positives present). 

5 Conclusion 

The 3 data types mutually agreeing with each other on the prediction of a module 
not only results in the most reliable predictions (as was the case for the cell cycle 
related modules), but also allows correlating a set of regulators with their 
corresponding regulatory motifs and elicited profiles in a very natural and direct 
way. On the other hand, because of the restricted number of experimental data yet 
available (ChIP-chip data not known for all regulators and tested in a limited set of 
conditions, expression data for specific conditions not available), and the 
questionable quality of the motif models, the presence of a signal in 1 data type can 
compensate for the lack of it in another data type, allowing still to retrieve the 
module. 

While to our knowledge this is the first time these 3 independently acquired 
data sources are exploited in such a concurrent way for module identification, the 
approach is further extendible towards any number of information sources, and in 
principle towards the use of other data types. The only condition for an efficient 
method to exist is that the constraints the gene sets have to satisfy must be 
hereditary. This extension will be the subject of future work. 
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