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The limitations of homology-based methods for prediction of protein molecular function
are well known; differences in domain structure, gene duplication events and errors in
existing database annotations complicate this process. In this paper we present a method
to detect and model protein subfamilies, which can be used in high-throughput, genome-
scale phylogenomic inference of protein function. We demonstrate the method on a set of
nine PFAM families, and show that subfamily HMMs provide greater separation of
homologs and non-homologs than is possible with a single HMM for each family. We
also show that subfamily HMMs can be used for functional classification with a very low
expected error rate. The BETE method for identifying functional subfamilies is illustrated
on a set of serotonin receptors.

1 Introduction

The vast majority of proteins have no experimentally determined function, and
prediction of molecular function by homology with functionally characterized
proteins has become status quo. Such predictions are used to obtain a
preliminary functional annotation, and thereby to guide wetbench experiments.
However, all homology-based methods of function prediction are known to be
prone to systematic errors of various types1-4. For a variety of reasons, including
domain fusion, gene duplication, and the undeniable presence of existing
database errors, inferring molecular function based on the annotated function of
the top hit in database search is fraught with potential hazards. Profile and
hidden Markov model (HMM) methods perform admirably in detecting
homologous proteins5, but these generally afford only a very high level of
functional classification.

Phylogenomic analysis of a protein in the context of its entire family has
been demonstrated to improve both the accuracy and specificity of functional
annotation2, 3, 6, but is time-consuming and not easily automated, and therefore is
generally applied to single families rather than at the genomic level.

We present here a method for obtaining a classification of sequences to
functional subfamilies that was used at Celera Genomics in the functional
classification of the human genome7. Subfamily HMMs model the functional
and structural variants of a protein family, so that regions of structural diversity
across the family are described by subfamily-specific amino acid preferences.

The ability to assign sequences to subfamilies automatically enables the
high-throughput application of phylogenomic inference of protein molecular
function which might otherwise be infeasible. If subfamily HMMs are



constructed for the family, scores of sequences against subfamily HMMs can
indicate a preliminary phylogenetic classification of a sequence, together with a
more precise prediction of function.

The remainder of the paper is organized as follows. An illustration of the
BETE subfamily decomposition is presented in section 2. Section 3 describes
our method of constructing subfamily HMMs, and section 4 shows experimental
results comparing the use of subfamily HMMs with single, family-level HMMs
on several tasks: training sequence detection, remote homolog detection and
classification accuracy.  Discussion and future work are described in section 5.

2 BETE Subfamily Decomposition

In these experiments, we obtain a subfamily decomposition using Bayesian
Evolutionary Tree Estimation (BETE)8. BETE estimates a phylogenetic tree
using agglomerative clustering; subtrees are represented by profiles constructed
using Dirichlet mixture densities9 and symmetrized relative entropy is used as a
distance metric between subtrees. Subfamilies are determined by a minimum-
description-length cut of the tree into subtrees8.

As presented elsewhere on Src homology 2 (SH2) domains8 and in the
functional characterization of the proteins encoded in the human genome7, the
BETE subfamily decomposition corresponds closely to experimental data on

Figure 1. NJ phylogenetic tree
with BETE subfamily decom-
position. At right is the tree
estimated using the neighbor-
joining software from the
PHYLIP suite, labeled with
BETE subfamil ies  and
bootstrap values (100 bootstrap
replicates were performed). A
collapsed version of the BETE
tree, displaying subfamilies as
terminal nodes, is at top left.
The BETE tree separates
vertebrates (top subtree) from
invertebrates, and clearly iden-
tifies functional subgroups. The
NJ tree requires rerooting in
order to clearly define the
5HT2A subgroup.



protein function and structure. We present in this section an illustration of the
subfamily classification enabled by BETE, in application to the serotonin-
receptor-related family of G-protein-coupled receptors. G-protein-coupled
receptors are of enormous biomedical importance and include many
pharmaceutical targets. Subfamily classification is particularly valuable in the
context of this group due to the number of orphan receptors with unknown
ligand specificity10.

For this example, sequence homologs to serotonin receptor type 2B from
human (SwissProt accession P41595) were gathered from the NR database using
the FlowerPower program (in preparation). The homologs were aligned using
MUSCLE11, and trees were constructed using BETE and neighbor-joining (NJ,
from the PHYLIP suite12).  See Figure 1.

3 Subfamily HMM Construction Method

The method requires as input a multiple sequence alignment of a set of related
proteins, with a specified decomposition into subfamilies. We use the same
HMM architecture for each subfamily HMM (SHMM); a general HMM
(GHMM) is constructed for the family as a whole and SHMMs are created by
replacing the GHMM match state amino acid distribution at each position with a
subfamily-specific distribution.

Figure 2. How to build subfamily HMMs.
Amino acid distributions for positions defining
the family as a whole are estimated once, and
fixed within each subfamily. For non-globally
conserved positions, examine the amino acids
aligned by each of the other subfamilies. If a
subfamily aligns similar amino acids, share
statistics. Otherwise, keep statistics separate. In
this toy example, the first two subfamilies will
share statistics throughout the alignment. The
last subfamily will share statistics with the first
two (and vice-versa) at the black-on-white
positions, but not at the white-on-black positions.

3.1 Estimating Subfamily Amino Acid Distributions

For each subfamily s, and at each column c in the alignment, we compute a
distribution over amino acids. We first discuss two special cases.

The first special case involves family-defining positions. Amino acid
distributions at positions conserving the same amino acid across all sequences
(allowing gaps) are fixed for all subfamilies. This enables subfamilies
containing very few sequences to share in the knowledge of the critical residues
(which might otherwise become generalized to allow substitutions). We first
estimate the number of independent observations in the family as a whole; this



number is used to weight the observed amino acids in deriving the posterior
estimate of the amino acid distribution using Dirichlet mixture densities. The
second case involves handling gapped positions. In these cases, the amino acid
distribution is copied from the general HMM for that position.

General case: To allow us to recognize related family members, but still
maintain specificity for each individual subfamily, we combine the amino acids
in subfamily s at column c with amino acids from subfamilies aligning similar
amino acids to those in subfamily s at position c. This is illustrated in Figure 2.

Sequence weighting: In common usage, sequence weighting is often
restricted to deriving relative weights for a set of sequences, to down-weight
sequences in highly populated subgroups and up-weight subgroups with few
sequences. However, in using Dirichlet mixture densities to estimate amino acid
distributions, the magnitude of the counts is also critical. In deriving subfamily
HMM match state distributions, our approach involves estimating the number of
independent observations in the alignment. We compute for every position in the
alignment the frequency of the most frequent amino acid (ignoring gap
characters) to derive the positional conservation propensity, and then compute
the average conservation propensity over all columns (Pcons). The number of
independent counts (NIC) can then be defined as 

€ 

NIC = N1−Pcons , where N is the
number of sequences in the alignment. This has the effect of producing an NIC
of 1 when the sequences in the alignment are 100% identical, and having NIC
approach N as the diversity in the alignment increases. The relative weights can
then be derived independently. In the following equations, the notation   

€ 

v n  = (n1,
n2, ..., n20) refers to the weighted counts of the amino acids seen at column c in
subfamily s, and ni  represents the weighted count of amino acid i at column c in
subfamily s. The amino acid distribution at that position for subfamily s is
estimated as follows:

Step 1: Obtain a Dirichlet mixture density posterior.
We obtain a full Dirichlet mixture posterior density ΘPost by combining the
Dirichlet mixture prior ΘPrior with the observed (weighted) amino acids seen in
the column9. The mixture coefficients qj, denoting the prior probability of each
component j and the component density parameters   

€ 

v α j  of the Dirichlet mixture
ΘPost are set as follows:

  

€ 

q j = Pr(v α j |
v n ,ΘPrior )

€ 

α ji =α ji + ni
Step 2: Compute the family contribution from subfamilies

€ 

s'≠ s.
When we compute the contribution from other subfamilies to the profile for
subfamily s at a fixed position, we add in amino acids from each subfamily
proportional to the probability of the amino acids aligned by each subfamily at

(1)



that position. Letting  

€ 

v n s'  be the amino acids aligned at that column by subfamily

€ 

s' , the “family contribution” is summed over all the subfamilies

€ 

s'≠ s, creating a
vector of amino acids  

€ 

v 
f , as follows:

  

€ 

v 
f = Pr(v n s' |ΘPost ) v n s'

s'≠s∑
In this equation,  

€ 

Pr(v n s' |ΘPost )  represents the posterior probability of  

€ 

v n s'  given the
posterior Dirichlet mixture density for subfamily s at that position. In practice,
we need to prevent the other subfamilies’ contributions from swamping the
amino acids observed in subfamily s; this is accomplished by capping the total

  

€ 

|
v 
f | to a user-specified maximum

Step 3: Combine the family contribution with the counts in subfamily s, to
obtain the total counts   

€ 

v t = (t1, t2 , ... t20), where ti = nsi + fi.
Step 4: Estimate the posterior amino acid distribution using Dirichlet

mixture priors. We modify the normal method for estimating the probability of
amino acid i at a position by substituting ti for ni and   

€ 

|
v 
t |  for   

€ 

| v n |:

  

€ 

ˆ p i ∝ Pr(v α j | v n ,ΘPrior )
t i +α ji

|
v 
t | + | v 

α j |j∑
Thus, we estimate the posterior probability of each component of the Dirichlet
mixture prior using both the observed subfamily counts, and counts from all
other subfamilies.

4 Experimental Validation

4.1 Data Chosen for Experiments

Subfamily HMMs are expected to contribute the most towards improved
homolog detection when constructed for large and diverse protein families, and
we selected a limited set of protein families with these characteristics at the
outset. We chose entries from the list of PFAM13 families beginning with letters
A-C, based on the following criteria: (1) Each family had to have at least one
member whose structure had been solved, and the alignment had to be at least
80 residues in length. This ensured that the selected family corresponded to a
structural domain and was not simply a short repeat. (2) In order to provide
informative comparisons between remote-homolog detection methods, the
family-level HMM had to detect at least 10 homologs in the Astral PDB90
dataset of protein structural domains, and each family had to belong to a
different SCOP superfamily14. (3) Finally, to ensure enough diversity in the
family, the PFAM full alignment had to contain at least 600 sequences and have
< 30% average pairwise identity (alignments with more than 3000 sequences
after being made non-redundant at 95% identity were excluded). Details of
PFAM families used in these experiments are provided in Table 1.

(2)

(3)



Figure 3 shows average per-position BLOSUM62 scores plotted for
selected families, displaying both the high family diversity and within-subfamily
conservation.

4.2 Technical Details

These experiments used the UCSC SAM software15 for scoring and aligning
proteins and to construct the general HMM.  Several preprocessing steps were
performed on the input sequences. The PFAM full alignment for each family
was made non-redundant at 95% identity to create the NR95 multiple sequence
alignment (MSA). We removed all columns having > 70% gaps and then all
sequences matching fewer than 70% of the PFAM HMM match states, to give
final un-gapped alignments (UG95).  The UG95 MSA was used to derive a
general HMM using the SAM w0.5 tool. The BETE algorithm8 was used to
identify subfamilies and SHMMs were constructed as described in Section 3.

SAM reverse scores were obtained using local-local scoring throughout.
Sequences were assigned a GHMM score and a SHMM score (the best of the
scores against all the SHMMs for the family).  Subfamily HMM E-values were
computed with respect to an extreme-value distribution fitted to SHMM scores
against random sequences, as in the HMMER package. To ensure that E-values
were comparable across families, an assumed database size of 100,000 (the

Table 1. PFAM family data. SCOP is the SCOP superfamily ID for the PFAM family; # sequences,
Gaps and Average %ID refer to the number of sequences, fraction of gaps and average percent
identity, respectively, within the UG95 MSA. # subfamilies is the number of subfamilies found by
BETE for that family. Subfam BL62 is the average per-position BLOSUM62 score in each subfamily
MSA. Full BL62 is the average per-position BLOSUM62 score in the UG95 MSA. Full BL62 ≥ 1 is
the fraction of columns in the UG95 MSA with average BLOSUM62 scores ≥ 1. TS GHMM and TS
SHMM give the fraction of training sequences detected by the GHMM and SHMM within an E-value
cutoff of 1e-10. PDB GHMM and PDB SHMM give the fraction of PDB90 homologs detected by the
GHMM and SHMM within an E-value cutoff of 1e-10. Class. Acc. is the fraction of sequences
correctly classified in the leave-one-out experiments.
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AAA c.37.1 1573 0.07 22 238 2.65 0.79 0.32 0.55 0.90 0.04 0.06 0.99
Cadherin b.1.6 2002 0.05 23 704 2.77 0.85 0.36 0.69 0.82 0.60 0.90 0.99
Cytochrome C a.3.1 725 0.14 17 245 2.57 0.58 0.18 0.12 0.68 0.10 0.54 0.93
Alpha_amylase c.1.8 874 0.13 17 184 2.48 0.52 0.21 0.98 0.99 0.34 0.34 0.98
Aminotran_1_2 c.67.1 1250 0.06 16 316 1.96 0.23 0.13 0.91 0.95 0.39 0.39 0.96
C2 b.7.1 865 0.06 21 263 2.69 0.77 0.33 0.38 0.88 0.69 0.77 1.00
Aldo_ket_red c.1.7 755 0.12 22 236 2.64 0.94 0.35 0.94 0.96 1.00 1.00 0.97
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approximate size of SWISSPROT release 40) was used for training sequence
detection experiments. For remote homolog detection experiments, we scored
against Astral PDB90 release 1.65, and we used the true database size (8888).

4.3 Training Sequence Detection

Unaligned training sequences were extracted from the NR95 MSA and scored
against the GHMM and SHMMs for that family. Figure 4 shows sequence
coverage versus E-value summed over all nine PFAM families for both methods
(results using an E-value cutoff of 1e-10 are summarized in Table 1). P-values
were computed using the Wilcoxon signed-rank test to determine the
significance of the differences between methods at different E-value cutoffs.

Figure 3. Average per-column pairwise BLOSUM62 scores for selected families.  The X-axis shows
the alignment column, and the Y-axis shows the average pairwise BLOSUM62 score for amino
acids in that column. Within-subfamily scores are in black; scores across the whole family are in
grey.  Alignment columns with low average BLOSUM62 produce noisy HMM match-state
distributions. Alignment quality of novel sequences to HMMs constructed from alignments with
these characteristics can be correspondingly poor in regions of high structural variability across the
family as a whole.



The SHMM method detects significantly more sequences than the GHMM at E-
values below 1e-10, with a P-value of 0.002.

4.4 Remote Homolog Detection Tests

In these experiments, we compared subfamily and general HMMs on the ability
to discriminate between homologs and non-homologs, using the Astral PDB90
database of structural domains16, as classified by the Structural Classification of
Proteins (SCOP) database17. The Astral PDB90 dataset  is a subset of protein
domains chosen so that no two are more than 90% identical when aligned. The
Astral datasets have been widely used by the computational biology community
to assess homology detection methods5, 18, 19.

For computational efficiency, we first scored PDB90 with the general
HMM for the family, and retrieved all sequences with E-values less than 100.
These sequences were then scored against the subfamily HMMs, and the results
were combined with the remaining GHMM scores.  Preliminary results
comparing this method with all-vs-all scoring of sequences against SHMMs
indicated that there was little difference between the two.  A more complete
comparison is in preparation.

Each of the matches was marked as either True (classified to the same
SCOP superfamily), False (classified to different SCOP folds) or Indeterminate
(in the same SCOP fold but different SCOP superfamilies).  We calculated
normalized coverage and errors per query (EPQ) as described20. Results for each
method were combined, sorted by e-value and assessed beginning with the most
significant score.  True positives were weighted such that each superfamily

Figure 4. Training sequence detection using General and Subfamily HMMs.
Shown here are results scoring training sequences against the general and subfamily HMMs using
local-local scoring. The Y-axis gives the E-values for sequences against the different HMMs. The X-
axis shows the fraction of sequences across all the families that scored at that level or better.



contributed equally to the total coverage.  The EPQ was calculated as the
cumulative number of false positives divided by the total number of sequences
in the database (8888 sequences for Astral PDB90 release 1.65).

In Figure 5, we show two plots to describe the combined results over all
nine PFAM families: a standard Coverage vs. Error plot, and Coverage vs. E-
value. Consistent with the results on training sequence detection, subfamily
HMMs provide stronger scores to clearly homologous sequences, but general
HMMs provide a small improvement over subfamily HMMs at detecting distant
homologs.  This improvement occurs at weak E-values of 0.1 and higher.

4.5 Classification Experiments

Homology-based functional annotation is at its heart a classification problem.
Given a protein, even one for which the general family is known, determination
of the functional subgroup to which it belongs is not a trivial task.  As described
in Section 2, the BETE subfamily decomposition correlates highly with subtypes
already identified by biologists, and it is natural to use this breakdown to give a
more precise prediction of protein molecular function. With this application in
mind, we examined subfamily HMM performance in classifying previously
unseen sequences.  Note that although we used the BETE subfamily
decomposition, the SHMM construction algorithm is independent of any
particular sequence grouping; subfamilies identified by other methods (for
example, manual annotation based on experimentally determined function) may
also be used as input.

For each family, we took the BETE subfamily decomposition based on the
UG95 MSA and removed one sequence at random. We required only that the

Figure 5.   PDB90 discrimination experiments, comparing subfamily and general HMMs.
For both methods, false positives appear at E-values of 0.1 and above, and both methods
obtain similar coverage at this cutoff, indicating that SHMMs do not identify more
homologs, but do afford a better separation between identified true positives and rejected
sequences.  SHMMs give stronger scores to clear homologs and reject non-homologs
with large E-values.



subfamily to which the sequence belonged contained at least two sequences.
Since the algorithm for constructing subfamily HMMs shares information across
all subfamilies, we then rebuilt all of the subfamily HMMs using the modified
alignment as input, but keeping the subfamily decomposition unchanged. We
assumed that the family identification of a test sequence was given; withheld
sequences were scored against the SHMMs from their family, and the top-
scoring SHMM was identified. A sequence whose top-scoring subfamily was
the one from which it had been extracted was counted as a success; any other
result was a failure. We tested 10% of the sequences from each family in this
way, for a total of 1035 sequences tested.

Results are shown in Table 1. Clearly, subfamily HMMs are proficient in
recognizing sequences from their subgroup. The average success rate across the
nine families was 97.4%, and the average for all sequences was 97.9% (22
sequences were incorrectly classified). In previous experiments (data not shown)
classification errors typically come from one of several sources: alignment
errors, subfamilies with few sequences losing sequences to larger subfamilies,
fragments being misclassified and input multiple sequence alignments
containing many gaps.

5. Discussion

Functional classification using homology-based methods is known to be prone
to systematic errors of various types. Phylogenomic inference of protein
molecular function has been shown by numerous investigators to improve the
accuracy of functional classification, but is difficult to automate for high-
throughput application.

This paper has described two tools to help automate phylogenomic
inference of protein function, and demonstrated the use of these tools in
predicting protein molecular function.

Bayesian Evolutionary Tree Estimation (BETE) identifies functional
subfamilies given a multiple sequence alignment. BETE uses Dirichlet mixture
densities and information theory to construct a phylogenetic tree and cut the tree
into subtrees to obtain a subfamily decomposition. BETE has been demonstrated
on a set of serotonin (and related) receptors; the subfamilies produced by BETE
have been shown to correspond to known ligand receptor subtypes.

A novel method for constructing hidden Markov models for functional
subfamilies has been described, given a subfamily decomposition and a multiple
sequence alignment. Results have been provided on nine large and divergent
PFAM families to demonstrate the use of subfamily HMMs for homolog
detection, database discrimination and classification of novel sequences.



Subfamily HMMs have been demonstrated to provide better separation
between homologs and non-homologs in database search than is possible using a
single HMM for the family alone, recognizing more homologs with stronger
scores and definitively rejecting non-homologs with large E-values. However,
detection of true remote homologs is somewhat superior using HMMs
constructed for the family as a whole, albeit with weak E-values and with a
higher number of false positives. The advantages of using subfamily HMMs in
detecting homologs are greater when the multiple sequence alignment used as
the input for HMM construction contains a large number of variable sequences
than when the sequences in the input alignment are more closely related.

Classification accuracy is high for subfamily HMMs. Given the biological
validity of BETE-identified subfamilies, high classification accuracy makes
subfamily HMMs a powerful tool for high-throughput functional genomics.

These results make sense in the light of a simple metric which can be used
to compare the information content of BETE subfamily and whole-family
alignments: the average pairwise BLOSUM62 score of the alignment columns,
either within subfamilies or across the full alignment. As shown in Figure 3 and
summarized in Table 1, within-subfamily scores are consistently higher than
whole-family scores. This within-family similarity explains the high specificity
of subfamily HMMs for closely-related sequences (such as training sequences,
homologs, and sequences being classified). Conversely, the whole-family
diversity explains the ability of general HMMs to improve upon SHMMs for
remote homolog detection.

Our homolog detection results comparing subfamily and general HMMs
illustrate the synergy between the two approaches for modeling protein families.
General HMMs can be used as a first pass to detect related family members;
subfamily HMMs then confer a more specific classification. Such a combined
approach also minimizes the additional computational time required by our
method, as only a very small fraction of sequences will be scored against the full
set of subfamily HMMs.

Our results suggest several directions for future work.  In particular, we
chose the families in the current dataset based on our beliefs about what type of
families would benefit from subfamily decomposition. Investigation of SHMM
performance on a more representative set of families is an immediate priority.
This will allow us to better ascertain how family characteristics such as size and
diversity contribute to increased SHMM performance over GHMMs.

SHMMs require as input a subfamily decomposition; we have used the
BETE method to derive this cut in these experiments. Other methods of
obtaining this cut, including the use of standard phylogenetic tree construction
algorithms, are also under investigation.



With regard to our SHMM construction algorithm, several issues should be
investigated. Here we used a single method of sequence weighting; alternate
algorithms may provide increased performance. Also, the homolog detection
and classification performance of our SHMMs should be assessed against the
‘naïve’ SHMM method that does not share information between subfamilies.
Such a method simply builds an HMM directly from the sequences in the
subfamily.
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