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The Gene Ontology (GO) is a controlled vocabulaigtely used for the annotation of
gene products. GO is organized in three hierarcfaeanolecular functions, cellular
components, and biological processes but no rekt#we provided among terms across
hierarchies. The objective of this study is to stigate three non-lexical approaches to
identifying such associative relations in GO anthpare them among themselves and to
lexical approaches. The three approaches are: demgpsimilarity in a vector space
model, statistical analysis of co-occurrence of 8fns in annotation databases, and as-
sociation rule mining. Five annotation databaségB@se, the Human subset of GOA,
MGI, SGD, and WormBase) are used in this studyotaltof 7,665 associations were
identified by at least one of the three non-lexaaproaches. Of these, 12% were identi-
fied by more than one approach. While there areostir,000 lexical relations among
GO terms, only 203 associations were identifiedbbyh non-lexical and lexical ap-
proaches. The associations identified in this stoalyld serve as the starting point for
adding associative relations across hierarchi€Qpbut would require manual curation.
The application to quality assurance of annotatiatabases is also discussed.

1. Introduction

The Gene Ontology™ (GO) is an important resoureg bias transformed the
functional annotation of gene products by providimg curators of model organ-
ism databases with a controlled vocabulary whichriagidly become de facto
standard. GO has over 17,000 terms and is organizéree hierarchies for
molecular functions, cellular components, and lgaal processes. However, if
hierarchical relationsig a, part of) constitute the backbone of ontologies, GO is
essentially a skeleton because it completely lasks®ciative relations across its
three hierarchies. Such associative relations winditate, for example, that a



cellular component is the location of a biologipabcess and that a molecular
function is involved in a biological process.

The lack of representation in GO of the relatioristeng among functions,
processes, and components severely limits the pofweasoning based on GO.
This issue has been recognized by Bada et alegsiwveloped th&ene Ontol-
ogy Annotation Too[GOAT) *. One major task in GOAT and its companion
projectGene Ontology Next Generatig@ ONG) is the acquisition of such rela-
tions and their formal representation in the Orggl@veb Language (OWL9

The approach taken in GOAT for acquiring assoaistibetween GO terms
has been to mine the annotation datalézesee Ontology AnnotatiofGOA) for
co-occurrence of GO terms. 600,000 associatione wbtained by this method,
excluding unreliable associations and the hieraethielations explicitly repre-
sented in GO". Another approach to identifying relations amon® @&rms
draws on the compositional structure of these tefggen et al. found that 65%
of all GO terms contain another GO term as a prepéstring®. Finally, in a
previous study, we suggested that association mihéng could be applied to
identifying dependence relations among GO tefnisumar et al. successfully
applied association rule mining techniques to theotation databases of six
bacterial genomes from The Institute for GenomeeBResh (TIGR) and evalu-
ated their findings in light of formal ontologicatinciples®.

In this study, rather than identifying all depencemelations, we concen-
trate specifically on associations among GO teroress ontologies. The pri-
mary objective of this study is to investigate thmon-lexical approaches to
identifying such associative relations in the Gé@wology (GO) and compare
them to lexical approaches. Our three approachescamputing similarity in a
vector space model, statistical analysis of co-oetice of GO terms in annota-
tion databases, and association rule mining. Arsgxy objective is to analyze
the consistency of the associations discoveredsadiee model organism data-
bases. In other words, the major contribution &f #tudy is not to define novel
non-lexical methods for studying term-term assamies, but rather to compare
multiple existing approaches among themselves artcatlitional lexical meth-
ods, systematically and across several model sgadatabases.

2. Datasets

The three approaches under investigation in thisystake advantage of the
existing annotation databases created for varicogeiorganisms. These data-
bases, made publicly available in a common formathe GO Consortium

describe gene products that have been annotatbd>@tterms by each collabo-

" http://mww.geneontology.org/GO.current.annotatishsnl



rating group. The annotation databases used irsthity correspond to the ma-
jor model organisms and were downloaded from thew@0site:

FlyBase (Drosophila melanogastgr

Human subset dBOA (Homo sapiens

MGI (Mus musculus

SGD™ (Saccharomyces cerevis)ae

WormBase (Caenorhabditis elegahs

Details about these datasets are provided in Tlable

arwN R

Table 1 — Detail of the datasets used in this study

Dataset Developed by Web site Dated

FlyBase FlyBase Consortium http://flybase.bio.imdizzdu/ 5/22/2004
GOA-Human | European Bioinformatics (EBI http://wvebi.ac.uk/GOA/ 6/4/2004
MGI Jackson Laboratory http://lwww.informatics.jargb 6/4/2004
SGD Stanford University http://www.yeastgenome.org/| 6/11/ 2004
WormBase WormBase Consortium http://www.wormbasg.or 5/11/2004

Table 2 — Number of unique gene products, GO teansd, gene product-term pairs in the five

annotation databases under investigation

Annotation DB #geneproducts | #GOterms | #GP-term pairs

FlyBase 9,090 3,597 38,089
GOA-Human 22,720 4,241 92,658
MGI (Mouse) 14,471 3,616 65,5711
SGD (Yeast) 6,457 2,412 25,218
WormBase 10,534 1,540 36,695

The version of GO used throughout this study isJilvee 2004 monthly re-
lease, available from the GO website. The GO tgmresent in the annotation
databases but not in the ontology were replacecunent terms whenever pos-
sible. For example, the ternamine oxidase (flavin-containing) activity
(G0O:0004041) is no longer present and was replagemine oxidase activity
(G0:0008131), with which it is currently assertedoe synonymous. The anno-
tations for which no current GO term existed wegeored. Also ignored were
the annotations for which the evidence supportiggassociation between a gene
product and a GO term is insufficient. In practiee, filtered out all annotations
inferred from electronic annotation (with ‘IEA’ @&vidence code), because they
are not reviewed by curators. We did not includeegithe negative associations,
marked with ‘NOT’ in theQualifier field of the annotation files. The number of
unique gene products, GO terms, and gene produmtgairs in each annotation

" http://geneontology.org/



database is given in Table 2. These counts rethecsubstitutions and filtering
mentioned above.

In addition to GO and the annotation databasesg¥htiation relies in part
on the Unified Medical Language SysfeniUMLS®) Metathesaur{s The
UMLS¥ is a terminology integration project developedhat U.S. National Li-
brary of Medicine. The UMLS Metathesaurus integsateny biomedical termi-
nologies, including the Gene OntolofyAlthough no relations across ontologies
are defined in GO, such relations — contributedther sources — may be pre-
sent in the Metathesaurus. More specifically, dssiwe relations asserted in
other source vocabularies are found in the MRRHEletaFor example, the GO
terms chloroplast and photosynthesisre also defined in the Medical Subject
Headings (MeSH), where they are cross-referenchid. “Eee also” relationship
is recorded in the Metathesaurus between the twoegds. Similarly, the co-
occurrence of MeSH descriptors in the MEDLINE datbis recorded in the
MRCOC table of the Metathesaurus. The edition ofUl3Mused in this study is
2004AA (April 2004).

3. Methods

The three approaches to identifying associativaticels in GO, presented in

detail below, can be summarized as follows:

1. A vector space model in which each GO term is diesdrby a vector of
gene products corresponding to the annotationki®fproduct in the anno-
tation database for a given organism.

2. Statistical analysis of co-occurrence of GO termthe annotations of gene
product, where the observed frequency of co-ocoga®f two GO terms is
compared to the frequency expected under the hgpistiof independence
of GO terms.

3. Association rules mined from the sets of GO termisaeted from annota-
tion databases, where each transaction corresgoniti® annotations of a
given gene product in a given annotation database.

In all three cases, the associations identifiedrest&ricted to associations across

GO ontologies (e.g., molecular function to bioladiprocess) by filtering out

the association within hierarchies.

Common to the three approaches is the assumptbthth dependence rela-
tions identified (e.g., among frequently associa@@ terms) should reflect
ontological relations (i.e., among entities whose existengeedé on one an-
other), themselves possibly correspondingbtological relations. Based on
different mathematical principles, the three apphes are expected to identify
different sets of dependence relations. While Hiea methods essentially rely

¥ http://umlsks.nlm.nih.gov/ (free license requijred



on the frequency of association between two GOggethey use different criteria
for determining which associations are significant.

3.1. Similarity in the vector space model

Vector space models (VSMs) are frequently usedhfariation retrieval for
computing the similarity between documents desdri vectors of keywords
A collection of gene products annotated with thetaidled vocabulary provided
by GO is in fact analogous to a collection of stifenarticles indexed with the
MeSH controlled vocabulary. Although the primarg ug a collection of index-
ing terms for documents (or annotation terms faregproducts) is to compute
the similarity among documents (or gene produats),interest here is to com-
pute the similarity among terms. Therefore, we h@v&anspose the matrix of
gene products by GO terms in order to obtain aimafr GO terms by gene
products. As usual in the VSM paradigm, the sirtildbetween two vectors is
represented by the angle between these vectorsuneebby the dot product of
the two (normalized) vectors.
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Figure 1 — Similarity in the vector space modeffra given annotation database

As illustrated in Figure 1, the original matrix (geproducts by GO terms)
consists of binary values indicating the presedge( absence (0) of an associa-
tion between a gene product and a GO term in angiveotation database. One
such matrix is created for each model organism. Mh&ix is then transposed.
Not represented in the figure is the weighting s#epveight is applied to each
binary association in order to lower the importan€@an association between a
GO term and a gene product when a given gene préslassociated with many



GO term&. This weighting scheme, shown in Eq. (1), is kn@srinverse docu-
ment frequency (idf) in information retrieval. Hetbe weight of each associa-
tion between a GO term and gene produstinversely proportional to the ratio
of the number of annotations for this gene proqugtto the total number of
distinct gene products in the corresponding anmotatatabase (N). Then, each
vector is normalized in order to compensate fofed#nces in the number of
genes associated with GO terms. Once the vecterswamalized, their dot
product varies between 0 and 1 and measures thiarsiynbetween them (see
Figure 1). A value of O corresponds to no simifanthile 1 indicates complete
similarity. Term-term similarity is computed paisei for all GO terms present,
resulting in a half-matrix for each model organidatabase. We use an arbitrary
threshold of .5 for the dot product in order toeselthe pairs of terms exhibiting
a high drgree of similarity.

. N
idf, = Iog; (1)
]

3.2. Co-occurrence in annotation databases

In probability theory, two events,EBnd k& are independent when the probability
of occurrence of the two events simultaneously,; P{EE,), is not greater than
the product of the probabilities of occurrencedach event, P(. P(E). Con-
versely, when P(En E;) > P(&) . P(R), E; and & are not independent. What
we are interested in identifying here are pairsnoin-independent” GO terms,
whose frequency of co-occurrence (i.e., simultasgmesence in the annotation
of a gene product) is higher than would be expeiftéte two terms had been
used independently by the curators. For a givengid@ O terms A,B), informa-
tion about their association in gene product artigsta can be summarized in a
two-way contingency table and analyzed statistéall

[J  nag, the number of gene products annotated with thA and ternB

Nap, the number of gene products annotated with #ebut not ternB

Ngs, the number of gene products annotated with #bmt not termA

Naw the number of gene products annotated with neigrenA or termB

The chi-square test of independence (or Pearshivsqouare) is often used
to test independence between two categorical Vadafiere, the presence or
absence of a given term in the annotations of gefiée chi-squarexf) statistic

[

8 The weighting step could probably be omitted i ¢thse of a matrix of GO
terms by gene products, because each gene haisesl Imamber of annota-
tions. It would, however, be crucial for computigpgne-gene similarity in a
matrix of gene-products by GO terms.



relies on the difference between observed freqesngj) for the four events
listed above and the frequencies expected unddnhathesis of independence.
The x? statistic has a chi-square distribution, specibigdts degrees of freedom.
There is one degree of freedom in the case of tap-@ontingency tables for
binary variables. A large value of thé statistic indicates a deviation from the
expected frequencies. In this case, i.e., whertohesponding P-value is lower
than the usual .05 threshold, the hypothesis tifstal independence is rejected
and the association is considered statisticallpiiggaint. One limitation of the
chi-square test is that all expected frequenciesrequired to be 5 or more. In
practice, this condition cannot be met if the frexoey of the terms is small.

An alternative to the Pearson’s chi-square teshéslikelihood ratio test
(also called G-test or G-square test). THestatistic compares the maximum of
the likelihood function under two circumstances: utjder the hypothesis of
independence and 2) under the general, observaiitioms. Like thex? statis-
tic, the G statistic has a chi-square distribution (also witie degree of freedom
in our setting). Interestingly, the ?Gstatistic does not have the minimum ex-
pected frequency requirements imposed byxtheHowever, for the &statistic
to be computed, all observed frequencies must &éaterthan 0.

In practice, for each pair of terms, we first afpério compute a Estatistic.

A X2 statistic is used instead when the requiremertsiat met for G Finally,
the association is ignored if it fails to meet b&thandx? requirements. Because
of the low frequency of co-occurrence of the teimghis case, identifying their
association is of little interest anyway.

While bothx? and G indicate the existence of an association betwaen t
variables, neither one describes the strengtheo&fisociation. Several similarity
coefficients have been developed for this purppsehich could be used to
select the pairs of terms exhibiting a strong assion. In this study, however,
we simply included all pairs of terms for which ttest indicated a statistically
significant association, regardless of the strenfthe association.

3.3. Association rule mining

Association rules capture the association betweersets of events of arbitrary
size and are expressed in the foAn= B, whereB is the set of events that can
be predicted fromA *°. Historically, the identification of associationles was
applied to analyzing grocery buying patterns, witles such asidread milk} =
{sugai expressing that customers buying bread and nigk aften buy sugar.
By applying association rule mining techniques tmaation databases, we
expect to discover that genes annotated with thetgB®@ T, are also frequently



annotated withl,. The set of GO terms annotating a gene productlied a
transaction in association rule mining parlance.

We used Christian Borgelt's implementation of #eriori algorithm’ to
mine association rules. Since our objective isdentify pairs of related GO
terms, we restricted the size of the sets undessiigation to two. The two major
parameters in the algorithm asapportandconfidence Support for the ruld;
= T, represents the proportion of genes annotated vath T; andT,. Confi-
dence for the same rule represents the proporfigeres annotated with both
andT, among those annotated wikh In order to restrict rules to almost system-
atic associations, we required confidence to Heast 90%. The minimum sup-
port was set to a low value (.05%) simply to eliaten“accidental” associations.
We use the product of support by confidence to ritesahe strength of the
association.

3.4. Evaluation

The first step of the evaluation consists in cormgathe results of the three
approaches. Associations identified independentlgdveral approaches simul-
taneously are expected to be stronger and therafore important. Finally, the
presence of the association in the annotation datsbof several organisms
suggests that this association is stronger thalatésb associations. What is
evaluated here is essentially the statistical Baarice of the associations.
Evaluating the ontological and biological significa of these associations is
beyond the scope of this study.

Additionally, we compared the results of our theggroaches to lexical as-
sociations and to associations present in the UMEeSthesaurus.

Lexical relations. Using the method proposed by Ogren et al., wetified
all pairs of GO terms where one term is nestedsasbatring in the other terfn
In order to reveal additional lexical relations, did a second run after system-
atically removing the word ‘activity’ from terms ithe molecular function hier-
archy.

UMLS relations. We searched the MRREL table for the presencessd-a
ciative relation§’ among concepts present in GO. Similarly, we seardhe
MRCOC table for the presence of co-occurrence ioglatamong GO concepts
(co-occurrence of MeSH descriptors in MEDLINE restsjr

™ http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriaml
™ Their relationship type (REL) is ‘RO’ for “otheelated concepts”.



4, Results

4.1. Associations identified

Examples of association identified specifically énch method are presented in
Table 3. The first three are the methods undersiiyation: VSM (vector space
model), COC (co-occurrence in annotation databases) ARM (association
rule mining). The others are the methods used énetraluation: LEX (lexical
relations), REL (associative relations in UMLS),daMDL (co-occurrence in
MEDLINE). Quantitative results are presented in [Eadb where the number of
associations identified by each method is brokemnrdby category of associa-
tion.

Table 3 — Examples of association identified speglify by each method

Method | Association
VSM MF:ice binding [G0:0050825]
BP: response to freezing [GO:0050826]
cocC MF: chromatin binding [G0:0003682]
CC: nuclear chromatin [GO:0000790]
ARM MF: carboxypeptidase A activity [G0:0004182]
BP: proteolysis and peptidolysis [G0:0006508]
LEX MF: mannosyltransferase activity{G0O:0000030]
CC: mannosyltransferase complgg0:0000136]
REL CcC: cell-matrix junction [GO:0030055]
BP: cell adhesion [GO:0007155]
MDL CC: synaptic vesicle [G0:0008021]
BP: exocytosis [GO:0006887]

Table 4 — Number of associations identified by eawthod for each category of association
(MF: molecular function; CC: cellular component;:Bffological process)

VSM | coCc | ARM | LEX | REL | MDL
MF-CC 499 893 362 917 i
MF-BP | 3057 | 1628 577 2523 ] L
CC-BP 760 | 1047 329 2053 2p 469
Total 4316] 3568] 126§ 549 2p 470
4.2. Overlap

A total of 13,398 associations were identified bjeast one method, 7,665 by at
least one of the three major methods (VSM, COC, ARt) and 5,963 by at
least one of the evaluation methods (LEX, REL, &Hal). Of these, only 230
associations were identified by both major and watidn methods. Examples of
associations identified independently but simultarsty by several methods are
presented in Table 5. As illustrated in Figure 2%lof the associations identi-



fied by the three major methods were identifiednbgre than one method. In
contrast, only a few lexical associations are plgsent in the UMLS.

Out of the 7,665 associations identified by attlese method, 5,950 (78%)
came from only one annotation database. In 1,1$6scél6%), the association
was simultaneously identified in two annotationadeses, 6% in three, and 2%
in two. Only 41 associations (less than 1%) wees@nt in all five databases.
Pairwise, after normalizing by the number of antiots in each database, the
highest rates of overlap are between MGD and GOAw#tu and MGD and
WormBase, the lowest between SGD and GOA-Humars&id and MGD.

Table 5 — Examples of association identified siamausly by several methods

Association % 8 E & ] B
> (] < - o =

MF: potassium channel activity = [G0:0005267] X X X

BP: potassium ion transport [GO:0006813]

MF: chemokine activity [GO:0008009] X X

BP: immune response [GO:0006955]

CcC: hemoglobin complex [GO:0005833] X X

BP: oxygen transport [GO:0015671]

MF: taste receptor activity [GO:0008527] X X

BP: perception of taste [G0:0050909]

MF: metal ion transporter activity [G0O:0046873] X X X

BP: metal ion transport [GO:0030001]

CC: transport vesicle [GO:0030133] X X

BP: transport [GO:0006810]

CC: gap junction [G0:0005921] X X X

BP: cell communication [GO:0007154]

5486

Figure 2 — Number of associations specific to eaethod (italic) or common to several methods

5. Discussion

Applications. The major application of our methods is of courséelp enrich

GO with associative relations across ontologiegol@gy creation and extension
is a daunting task. However, by automatically ectirgy candidate relations from
annotation databases, the approaches investigatiisistudy can significantly



reduce the human effort required. We recommendttigaassociations identified
in this study serve as the starting point for agdassociative relations across
hierarchies to GO. The associations we identifiedid also be used for quality
assurance purposes, i.e., to assess the consistedoayompleteness of annota-
tion databases. Analogously, knowledge of freqyesskociated terms could be
presented to curators in annotation environments.

Advantages and limitations. Many associations identified by our ap-
proaches cannot be found by lexical methods. Tinfapeance of lexical meth-
ods could be improved by factoring in term variat{sflection, derivation) and
using more rigorous parsing of the terms; it wotlowever, remain poor due to
the limited number of synonyms available in GO &ach term. By imposing
constraints such as minimum frequency and stadlistiignificance of co-
occurrence and minimum confidence for associatidesr our approaches are
more selective than the unrestricted methods us€alQAT. Limitations — not
specific to our approaches — include the fact izt is identified is the pres-
ence of associations between GO terms, not théireaMoreover, the manual
curation of the associations identified remainsessary in order to assess their
biological significance.

Evaluation. The limited overlap between associations idexdifoy our ma-
jor methods and the evaluation methods was somewiedpected. The lexical
relation between, for exampl&ansport and transport vesiclds ontologically
valid but never present in annotations. Althoughtfomedical literature plays a
role in both approaches, the limited overlap betwaenotation databases and
MEDLINE co-occurrences may have the following exgpitons. Many annota-
tions are derived from sources other than theadlitee (e.g., inferred from se-
quence or structural similarity) and MEDLINE co-aoences are not guaran-
teed to relate to the same gene when several geaelscussed in an article.

Generalization. As shown in earlier studiés, dependence relations can be
found both within and across the three GO ontokgidthough this study is
purposely restricted to the identification of asatiee relations across GO on-
tologies, our methods actually identified almostnasny dependence relations
within ontologies (not reported on here). The lexicalhodtcaptures five times
as many associations within ontologies than acinskiding a majority of direct
parent-child associations. Because curators arkelinto use both a parent term
and its child in the annotation of a gene, the @asions within ontologies cap-
tured by our methods are essentially between dissinbtrees of GO hierarchies
(e.g., betweemetallopeptidase activitjcatalytic activitysubtree] andinc ion
binding [binding subtree]). Finally, our approaches could be afpi other
domains (e.g., for identifying relations among terof a clinical terminology
using clinical databases indexed with this ternogg).



Future directions. Many interesting aspects of the association batweO
terms are beyond the scope of this paper. Thosedssvhich we expect to ad-
dress in the near future, include the redundancgssbciations across species
and applications to the functional interpretatié®experimental results.
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