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Existing clustering methods do not deal well with overlapping clusters, are unstable and do not 
take into account the robustness of biological systems, or more complex background 
knowledge such as regulator binding data. Here we describe a nonnegative sparse factorization 
algorithm dealing with the above problems: cluster overlaps are allowed by design, the 
nonnegativity constraints implicitly approximate the robustness of biological systems and 
regulator binding data is used to guide the factorization. Preliminary results show the 
feasibility of our approach. 

1 Introduction and motivation 
 
The advent of microarray technology has allowed a revolutionary transition from the 
exploration of the expression of a handful of genes to that of entire genomes. 
However, despite its enormous potential, microarray data has proved difficult to 
analyze, partly due to the significant amount of noise, but also due to the large 
number of factors that influence gene expression (many of which are not at the 
mRNA/transcriptone level) and the complexity of their interactions. 

One of the most successful microarray data analysis methods has proved to be 
clustering (of genes and/or samples), and a large variety of such methods have been 
proposed and applied to real-life biological data. This large body of work, 
impossible to extensively review here, has emphasized important limitations of 
existing clustering algorithms: 
(1) Most clustering methods produce non-overlapping clusters. However, since 
genes are typically involved in several biological processes, “non-overlapping” 
clustering methods, such as hierarchical clustering (HC) [2], self-organizing maps 
(SOM) [12], k-means clustering, etc., tend to be unstable, producing different gene 
clusters for only slightly different input samples (e.g. in the case of HC), or 
depending on the choice of initial conditions (as in the case of SOM [5], or k-
means). 

Algorithms allowing for overlapping clusters, such as fuzzy k-means [4] 
achieved significant improvements w.r.t. “non-overlapping” clustering, but they still 
have the problems discussed below. 
(2) Most algorithms perform clustering along a single dimension comparing e.g. 
genes w.r.t. all the available samples, whereas in reality genes have coordinated 
expression levels only for certain subsets of conditions. Algorithms dealing with this 
problem, such as biclustering [13], coupled-two way clustering (CTWC) [3], ISA 
(iterative signature) [1] have other problems mostly related to the control of overlap 
between biclusters. 



  

(3) Although genes are subject to both positive and negative influences from other 
genes, the robustness of biological systems requires that an observed change in the 
expression level of a given gene is the result of either a positive or a negative 
influence rather than a complex combination of positive and negative influences that 
partly cancel out each other (as in the case of Principal Component Analysis). 

Nonnegative Matrix Factorization (NMF) [9] deals with this problem by 
searching for nonnegative decompositions of (nonnegative) data. The observed 
localized nature of the decompositions seems to be a biproduct of the nonnegativity 
constraints [9]. 

Recently, Brunet at al [5] applied NMF for clustering samples in a non-
overlapping mode for three cancer datasets. While oligonucleotide arrays used in 
that work produce positive data, which lend themselves naturally to nonnegative 
decompositions, clustering genes in an analogous manner would ignore potential 
negative influences (i.e. genes downregulating other genes). 

On the other hand, Kim and Tidor [6] used NMF to cluster genes in the context 
of a large dataset of yeast perturbation experiments (spotted arrays) [7]. Although 
NMF has the tendency of producing sparse representations, the factorizations 
obtained were subjected to thresholding and subsequent reoptimization to obtain 
sufficiently sparse clusters. 

Unfortunately however, microarray data is noisy and it might be useful to be 
able to take into account any background knowledge that may be available. For 
example, Lee et al [8] have published binding (location analysis) data for a large 
number (106) of transcription factors in the yeast S. Cerevisiae. 

Elsewhere [in preparation] we have observed that transcription factor (TF) 
expression levels are not always good predictors for the expression levels of their 
targets. (The presence of the transcription factor is of course required for the target 
to be expressed, but very frequently the TF is activated by a different signaling 
molecule, e.g. a kinase.) Therefore using the binding data directly as background 
knowledge may not be very helpful in practice. 

In fact, it seems that although TFs are not well correlated with their targets, the 
targets themselves seem to be much better correlated among each other. 

In the following, we show how TF binding data can be used as background 
knowledge in a novel nonnegative factorization algorithm NNSCB (Nonnegative 
Sparse Coding with Background Knowledge) designed to address the above-
mentioned problems of existing clustering algorithms. 

Our algorithm is an improvement of the nonnegative sparse coding (NNSC) 
algorithm of Hoyer [11]. It produces overlapping clusters that are much more stable 
than those generated with other algorithms, while also being able to take background 
knowledge into account. 



  

2  The data sources 

Since the most extensive background knowledge is available for the yeast S. 
Cerevisiae, in this paper we use the Rosetta Compendium [7], the largest publicly 
available gene expression dataset for yeast perturbations, as well as the binding 
(location analysis) data of Lee et al. [8]. 

The Rosetta Compendium contains expression profiles over virtually all yeast 
genes (6315 ORFs) corresponding to 300 diverse mutations and chemical treatments 
(276 deletion mutants, 11 tetracycline-regulatable alleles of essential genes and 
treatments with 13 well-characterized compounds) of S. Cerevisiae grown under a 
single (normal) condition. The data contains log-expression ratios 
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tfgr ∆= , where g(tf∆) and g(WT) are the mRNA concentrations of gene 

g in the tf∆ mutant and the wild type respectively. 
The location analysis data of Lee et al. contains information about binding of 

106 transcriptional regulators to upstream regions of target genes. 
Since log-ratios can be negative, we cannot directly apply a nonnegative 

factorization algorithm to the log-ratio dataset. On the other hand, although the 
ratios r (or maybe r-1) are nonnegative, applying nonnegative factorization on them 
would only uncover the positive influences, while in practice the low level of certain 
genes is due to them being downregulated by other genes. 

To address problem (3) mentioned in the Introduction, we separate, as in [6], the 
up-regulated from the down-regulated part of each gene, i.e. obtain two entries g+ 
and g− for each gene g from the original gene expression matrix: 
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Note that in this representation, a significantly downregulated gene will require a 
non-negligible contribution in the factorization. (We use the ratios rather than log-
ratios as in [6], since linear combinations of log-ratios amount to products of powers 
of ratios rather than additive contributions.) 

3  Nonnegative Sparse Coding 

Hoyer’s NNSC algorithm [11] factorizes a ns× ng matrix X ≈ A ⋅ S as a product of an 
ns× nc matrix A and a nc× ng matrix S by optimizing (minimizing) the following 
objective function: 1 

                                                           
1 To achieve information compression, the number of internal dimensions nc must verify the 

constraint nc(ns+ng) < nsng. 
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with respect to the nonnegativity constraints     Asc ≥ 0,  Scg ≥ 0   (2) 
The objective function combines a fitness term involving the Frobenius norm of 

the error and a size term penalizing the non-zero entries of S. (The Frobenius norm 
is given by   ).(
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The Nonnegative Matrix Factorization (NMF) of Lee and Seung [10] is 
recovered by setting the size parameter λ to zero, while a non-zero λ would lead to 
sparser factorizations. 

The objective function (1) above has an important problem, due to the invariance 
of the fitness term under diagonal scalings. More precisely we have the following 
result. 

Proposition. The fitness term 2

2
1

FASX − (i.e. the NMF objective function) is 

invariant under the following transformations:  
A ← A⋅D-1,   S ← D⋅S,       (3)  

where D = diag(d1,…,dnc) is a positive diagonal matrix (dc > 0). 

Note that such positive diagonal matrices are the most general positive matrices 
whose inverses are also positive (thereby preserving the nonnegativity of A and S 
under the above transformation). 

The scaling invariance of the fitness term in (1) makes the size term ineffective, 
since the latter can be forced as small as needed simply by using a diagonal scaling 
D with small enough entries. Additional constraints are therefore needed to render 
the size term operational. Since a diagonal matrix D operates on the rows of S and 
on the columns of A, we could impose unit norms either for the rows of S, or for the 
columns of A. 

Unfortunately, the objective function (1) used in [11] has an important flaw: it 
produces decompositions that depend on the scale of the original matrix X (i.e. the 
decompositions of X and αX are essentially different), regardless of the 
normalization scheme employed. For example, if we constrain the rows of S to unit 
norm, then we cannot have decompositions of the form X ≈ A⋅S and αX ≈ αA⋅S, 
since at least one of these is in general non-optimal due to the dimensional 
inhomogeneity of the objective function w.r.t. A and X 
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On the other hand, if we constrain the columns of A to unit norm, the 
decompositions X ≈ A⋅S and αX ≈ A⋅αS cannot be both optimal, again due to the 
dimensional inhomogeneity of C, now  w.r.t. S and X: 
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Therefore, as long as the size term depends only on S, we are forced to constrain 
the columns of A to unit norm, while employing an objective function that is 
dimensionally homogeneous in S and X. One such dimensionally homogeneous 
objective function is: 
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which will be minimized w.r.t. the nonnegativity constraints (2) and the constraints 
on the norm of the columns of A: 

1=cA  (i.e. 12 =∑ s scA )     (4) 

It can be easily verified that this produces scale independent decompositions, i.e. 
if X ≈ A⋅S is an optimal decomposition of X, then αX ≈ A⋅αS is an optimal 
decomposition of αX. 

The constrained optimization problem could be solved with a gradient-based 
method. However, in the case of NMF, faster so-called “multiplicative update rules” 
exist [10,11], which we have generalized to the NNSC problem as follows. (These 
methods only produce local minima, but the solutions tend to be quite ‘stable’ – see 
also Section 5 below.) 

Modified NNSC algorithm 
Start with random initial matrices A and S  
loop 
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normalize the columns of A to unit norm: 1−⋅← DAA , ( )∑=
s scAdiagD 2  

until convergence. 

In the following, we assume that the gene expression data is given in an ns× ng 
matrix X, where ns and ng are the numbers of samples and genes respectively, so that 
Xsg represents the expression level of gene g in sample s. 

A sparse factorization X ≈ A⋅S will be interpreted as a generalization of 
clustering the genes (i.e. the columns Xg of X) into overlapping clusters c 
corresponding to the rows Scg of S. More precisely, a non-zero value of Scg (or at 
least an Scg larger than a given threshold) will be interpreted as the gene g belonging 
to cluster c. Note that clusters can be overlapping, since the columns of S may have 
several significant entries. 

Although overlaps are allowed, NNSC will not produce highly overlapping 
clusters, due to the sparseness constraints. This is unlike many other clustering 



  

algorithms that allow clusters to overlap, which have to resort to several parameters 
to keep excessive cluster overlap under control.) 

Also note that we factorize X rather than XT since the sparsity constraint should 
affect the clusters of genes (i.e. S) rather than the clusters of samples A. (This is 
unlike NMF, for which the factorizations of X and of XT are completely 
symmetrical.) 

4  Nonnegative Sparse Coding using Background Knowledge 

Transcription factor binding data can be represented by a nf × ng Boolean matrix B, 
such that Bfg=1 iff the transcription factor f binds to the upstream region of gene g. 

As already mentioned in the Introduction, although transcription factor 
expression levels are not always good predictors of the expression levels of their 
targets, the targets are frequently much better correlated among themselves. This 
suggests using the co-occurrence matrix K=BTB rather than B as background 
knowledge. K is an ng× ng square matrix, in which Kg’g’’ ≠ 0 iff genes g’ and g’’ are 
both targets of some common transcription factor f. 

Our idea of exploiting background knowledge during clustering is quite simple. 
Normally, non-zero entries in the “gene cluster” matrix S are penalized for size. 
However, if certain entries conform to the background knowledge, they will be 
exempted from size penalization. We thus need to modify the size term in C(A,S) to 
take into account B. 

Implementing this simple idea involves however certain subtleties. Assume that 
some gene cluster c (i.e. set of genes g for which Scg ≠ 0, or at least Scg > T for some 
given threshold T) contains many genes that are targets of several TFs (e.g. Figure 
1b below). Although this cluster is preferable from the point of view of the 
background knowledge to the one from Figure 1a, it is worse than the one from 
Figure 1c, in which all the genes are the targets of a single TF.  

 
  
 
 
 
 

Figure 1. Conformance of clusters to the binding data: (c) is preferable to (b), which is 
preferable to (a). 

Thus, the size term cannot be simply a sum of overlaps of the clusters (i.e. rows 
of S) with groups of TF-targets (rows of B), since 

( )( )∑∑ ∑∑ ∑ ∑ =
f fgg c cgc f g fgcg BSBS   

does not depend on the way the genes are distributed in groups of TF-targets for 
different TFs. 

tf1   tf2   tf3    tf4                   tf1         tf2                                    tf

g1     g2     g3      g4                      g1     g2        g3         g4                    g1   g2     g3    g4 

(a)           (b)        (c)



  

Clusters like the one in Figure 1c can be highly evaluated if cross-terms between 
genes controlled by the same TF are added. We thus encourage genes controlled by 
the same TF in the binding data, while penalizing the size of S using an objective 
function of the form: 
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 and σ(⋅) is the Heaviside step function (applied element-wise). 

Of course, optimization of (5) is attempted in the context of the constraints (2) and 
(4). The algorithm below solves the above optimization problem using combined 
multiplicative and additive update rules. (The final normalization of the rows of S 
renders the resulting clusters comparable.) 

NNSCB algorithm 
start with random initial matrices A and S 
loop 
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normalize the columns of A to unit norm: 1−⋅← DAA , ( )∑=
s scAdiagD 2  

until convergence 

SDS ⋅← −1  and DAA ⋅← ,  where ( )∑=
g cgSdiagD 2  

To test our approach, we have applied the NNSCB algorithm on a synthetic 
dataset with several highly overlapping clusters. NNSCB has been able to 
consistently recover the clusters, or close approximations thereof even in the 
presence of noise. (See http://www.ai.ici.ro/psb05/synthetic.pdf for more details.) 

5  Clustering the Rosetta dataset w.r.t. the binding data of Lee et al. 

Although the main goal of this paper is the presentation of a new clustering 
algorithm able to deal with background knowledge rather than obtaining new 
biological insights, we also briefly discuss our initial attempts at applying our 
algorithm to yeast microarray data. 

The binding data of Lee et al. contains the targets of 106 transcription factors, 
roughly about half the total number of yeast transcription factors. In order not to 
introduce a bias towards the targets of these TFs due to the background knowledge, 



  

we have selected from the Rosetta dataset only these targets.  (We also eliminated 
the genes that had unreliable measurements in the Rosetta dataset – dealing with 
missing values in our context is a matter of future work.) This left us with a set of 99 
TFs and 2099 genes. The matrix X to be factorized was constructed by duplicating 
genes as described in Section 2 (X has therefore 4198 columns). Duplicating genes g 
into their positive (g+) and negative parts (g−) may raise potential problems with 
possible conflicts between nonzero Scg+ and Scg− entries, as a gene cannot be both 
up- and down regulated in a given cluster. The fact that our decompositions never 
have both Scg+ and Scg− nonzero (significant) shows that the approach is biologically 
sensible. 

An important parameter of the NNSCB factorization is its internal dimensionality 
(the number of clusters nc). A useful estimate of the internal dimensionality of a 
dataset can be obtained from its singular value decomposition (SVD). 

A more refined analysis [6] determines the number of dimensions around which 
the root mean square error (RMSE) change of the real data and that of a randomized 
dataset become equal. Kim and Tidor’s analysis estimated the internal 
dimensionality of the Rosetta dataset to be around 50. We performed this analysis 
for our restricted dataset and obtained a similar dimensionality around 50 (see 
Figure 2). 
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Figure 2. Determining the internal dimensionality of the Rosetta dataset using the method of 
Kim and Tidor 

We also considered another approach: for a given set of clusters we determined 
the fraction of intra-cluster correlated pairs of genes (i.e. the number of correlated 
pairs of genes divided by the total number of correlated pairs of genes). This 
fraction was estimated for various correlation thresholds r0. (More precisely, a gene 
pair (g1,g2) is called correlated w.r.t. threshold r0 iff | r(g1,g2) | ≥ r0.) Figure 3 depicts 



  

the r0-dependence of the fraction of intra-cluster correlated pairs of genes for 
various dimensionalities. Notice that nc=50 is a reasonable choice as the above 
mentioned fraction approaches 90% for a large range of r0. (This means in other 
words that most of the correlated gene pairs are within clusters.) 

 
Figure 3. The correlation-threshold dependence of the fraction of intra-cluster correlated 
gene pairs. 

Next we studied the stability of the algorithm w.r.t. the initial starting point. (The 
algorithm was run disregarding the background knowledge, i.e. taking λ=0, in order 
to avoid any possible influences of the background knowledge on the stability of 
some solution fragment.) The Table below lists the relative errors (||X-AS||F/||X||F) 
obtained in 7 runs for 7 different initializations. 

run no. 1 2 3 4 5 6 7 
relative error 0.1544 0.1677 0.1636 0.1718 0.1592 0.1606 0.1782 

To asses the stability of the decomposition in the case of k runs, we determined 
the best matches among the k sets of clusters. The following Table shows the 
numbers of matching clusters for a progressively larger number of runs. Note the 
(relative) stabilization of the number of matching clusters w.r.t. the numbers of runs: 

Numbers of runs 1 2 3 4 5 6 7 
Matching clusters (avg.) 50 48.4 42.2 40.1 37.2 36 35 

Next, we studied the influence of the background knowledge on the solution. In 
order to separate the variability of the results due to the initialization from that due 



  

to the background knowledge, we performed all the following tests using the same 
initialization. We ran NNSCB with several values of the parameter λ, ranging from 0 
(background knowledge is not taken into account) to 0.75 (background knowledge 
has comparable weight to the data fit term) and tested the overlap of the resulting 
clusters with the background knowledge. Briefly, we observed a clear increase of 
this overlap with larger λ. More precisely (more details can be found in the Table 
below):  
- the average fraction of cluster genes controlled by TFs increased from about 

47% for λ=0 to 66% for λ=0.75. (Only the TFs controlling at least two genes 
from the cluster were counted.) 

- the average number of TFs per cluster controlling at least two genes increased 
from around 8 for λ=0 to 14 for λ=0.75. 

λ 0 0.1 0.2 0.5 0.75 
avg. number of genes in a cluster 27.8 32 36.4 43.6 78.7 
avg. fraction of cluster genes 
controlled by TFs 0.47 0.46 0.51 0.60 0.66 
avg. number of TFs per cluster 7.9 8.6 10.4 13.4 17.9 
avg. cluster overlap 1 1.3 2.1 3.6 10 
avg. cluster overlap (when only 
overlapping pairs are averaged) 2.7 3.3 4.3 6.2 14.7 
Relative error 0.16 0.18 0.23 0.33 0.41 

Of course, conformance to the data and/or to the background knowledge does 
not imply the biological relevance of the results. To estimate the latter, we searched 
for significant Gene Ontology (GO) annotations [14] of the genes in the clusters. 
More precisely, we employed the hypergeometric distribution to compute p-values 
representing likelihoods that specific GO annotations and a given cluster share a 
given number of genes by chance and retained only the annotations with a p-value 
less than 10-3. (This p-value threshold was chosen so that not more than 1 or 2 
annotations are false positives, given that the genes in our dataset share 2422 GO 
annotations – some of which may of course be related by sub- or super-class 
relationships. We did not use a lower threshold in order to avoid many missing 
annotations.) 

To demonstrate the biological relevance of the factorizations using background 
knowledge, we performed alternative factorizations for randomized background 
knowledge (more precisely, by randomly permuting the lines of B independently of 
each other). This lead to a drop in the average number of significant GO annotations 
per cluster from 8.16 to 4.88 (for λ=0.75).  

We also looked at a few clusters in more detail. For example, cluster 47 had 18 
genes, involved in the STE12 control of pheromone response, among which, for 
instance, AGA1, FIG1, FUS1 are involved in cell fusion, while GPA1, FUS3 and 
PRR2 are involved in the pheromone signal transduction pathway, KAR4 is a 
regulatory protein required for pheromone induction of karyogamy genes and SST2 
is involved in desensitization to alpha-factor pheromone. The mating a-factor genes 
MFA1 and MFA2 are also in the cluster. The entire cluster is presented in the 



  

Annex, together with the associated significant GO annotations and the cluster 
coefficients from the S matrix. (The threshold used for extracting clusters from the S 
matrix was 1/◊ng= 0.0154.)  

5 Conclusions 

Despite their wide-spread use in microarray data analysis, existing clustering 
algorithms have serious problems, the most important one being related to the fact 
that biological processes are overlapping rather than isolated. The impact of 
microarray technology is also limited by the noisy nature of measurements, which 
can only be compensated by additional background knowledge. Here we have 
shown how these important problems faced by microarray data analysis can be dealt 
with in the context of a sparse factorization algorithm capable of dealing with 
regulator binding data as background knowledge. A key ingredient of this algorithm 
is the nonnegativity constraint. Such an approach, for example using NMF, has been 
mostly advocated in connection with oligonucleotide array data, which are (at least 
theoretically) nonnegative. However, this viewpoint is only partially correct, since 
downregulated genes would not be explained in such a framework. Actually, we 
argue that nonnegative factorizations are appropriate due to the robustness of 
biological systems, in which an observed change in a gene’s expression level is the 
result of either a positive or a negative influence rather than a complex combination 
of the two. Although our preliminary results are encouraging, a more detailed 
biological analysis should be the focus of subsequent work. (The clusters obtained 
by our algorithm for various parameter settings can be found online at 
http://www.ai.ici.ro/psb05/.) 
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Annex. The 18 genes of cluster 47 and the TFs controlling them  

Significant GO annotations (with p-values): conjugation(0),conjugation with cellular fusion(0),sexual 
reproduction(0),reproduction(2.30e-11),response to pheromone(4.96e-11),response to chemical 
substance(2.24e-9),response to abiotic stimulus(2.89e-9),development(1.07e-8),response to pheromone 
during conjugation with cellular fusion 1.13e-8),response to external stimulus(1.34e-8),cell 
communication(2.51e-8),signal transduction during conjugation with cellular fusion(1.57e-6),response 
to stimulus(2.11e-6),signal transduction(3.85e-6),G-protein coupled receptor protein signaling 
pathway(4.27e-6),cell surface receptor linked signal transduction(9.42e-6),shmoo tip(9.42e-6),signal 
transducer activity(4.42e-5),pheromone activity(1.97e-4),receptor binding(1.97e-4),cellular 
process(3.05e-4),receptor signaling protein serine/threonine kinase activity(3.92e-4),site of polarized 
growth(9.32e-4),site of polarized growth (sensu Fungi)(9.32e-4),site of polarized growth (sensu 
Saccharomyces)(9.32e-4),receptor signaling protein activity(9.70e-4) 
STE12 targets: STE12, SST2, TEC1, FUS1, KAR4, GPA1, MFA2   
MCM1 targets: MFA1, STE6, MFA2, AGA1   
PHD1 targets: PRR2, GPA1   
+: 0.000000    -: 0.970648    PRR2 strong similarity to putative protein kinase NPR1 
+: 0.000000    -: 0.146131    YDL133W  
+: 0.000000    -: 0.132290    FUS1 cell fusion protein 
+: 0.064781    -: 0.000229    PRY3  
+: 0.000000    -: 0.056725    FIG1 required for efficient mating 
+: 0.000000    -: 0.040888    AGA1 a-agglutinin anchor subunit 
+: 0.029486    -: 0.000000    HSP12 heat shock protein 
+: 0.000000    -: 0.027441    MFA2 mating pheromone a-factor 2 
+: 0.000000    -: 0.023362    GPA1 GTP-binding protein alpha subunit of the pheromone pathway 
+: 0.000000    -: 0.022420    questionable ORF  
+: 0.000062    -: 0.022318    STE6 ATP-binding cassette transporter protein 
+: 0.000000    -: 0.020931    STE12 transcriptional activator 
+: 0.000000    -: 0.020907    FUS3 mitogen-activated protein kinase (MAP kinase) 
+: 0.000000    -: 0.020485    MFA1 mating pheromone a-factor 1 
+: 0.000000    -: 0.020241    SST2 involved in desensitization to alpha-factor pheromone 
+: 0.000000    -: 0.020059    YLR343W  
+: 0.000000    -: 0.019342    TEC1 Ty transcription activator 
+: 0.000103    -: 0.018020    KAR4 regulatory protein required for pheromone induction of 
karyogamy genes 
Parameters: λ=0.1, µ=5⋅10-6, S-threshold=0.0154, 300 iterations. 




