
Fast and Cheap Genome Wide Haplotype Construction via Optical Mapping

T.S. Anantharaman, V. Mysore, and B. Mishra

Pacific Symposium on Biocomputing 10:385-396(2005)



September 24, 2004 0:51 Proceedings Trim Size: 9in x 6in amm12a-procs9x6

FAST AND CHEAP GENOME WIDE HAPLOTYPE

CONSTRUCTION VIA OPTICAL MAPPING∗

T.S. ANANTHARAMAN∗, V. MYSORE†, AND B. MISHRA†

∗Wisconsin Biotech Center, Univ. Wisc., Madison WI, U.S.A

† Courant Institute of Mathematical Sciences, NYU, New York, NY, U.S.A.

E-mail:tsa@biostat.wisc.edu; {vm40,mishra}@nyu.edu

We describe an efficient algorithm to construct genome wide haplotype restriction
maps of an individual by aligning single molecule DNA fragments collected with
Optical Mapping technology. Using this algorithm and small amount of genomic
material, we can construct the parental haplotypes for each diploid chromosome for
any individual. Since such haplotype maps reveal the polymorphisms due to single
nucleotide differences (SNPs) and small insertions and deletions (RFLPs), they
are useful in association studies, studies involving genomic instabilities in cancer,
and genetics, and yet incur relatively low cost and provide high throughput. If
the underlying problem is formulated as a combinatorial optimization problem,
it can be shown to be NP-complete (a special case of K-population problem).
But by effectively exploiting the structure of the underlying error processes and
using a novel analog of the Baum-Welch algorithm for HMM models, we devise
a probabilistic algorithm with a time complexity that is linear in the number of
markers for an ǫ-approximate solution. The algorithms were tested by constructing
the first genome wide haplotype restriction map of the microbe T. pseudoana, as
well as constructing a haplotype restriction map of a 120 Mb region of Human
chromosome 4. The frequency of false positives and false negatives was estimated
using simulated data. The empirical results were found very promising.

1. Introduction

Diploid organisms, such as humans, carry two mostly similar copies of each

chromosome, referred to as haplotypes. Variations in a large population of

haplotypes at specific loci are called polymorphisms. The co-associations
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of these variations across the loci indices are of intense interest in disease

research.

The main limitation of most SNP based approaches is that each SNP

is assayed separately without the related phasing information. Instead,

the phase is inferred statistically from a large population of SNP data

and employ certain simplifying assumptions such as: parsimony in the to-

tal number of different haplotypes in the population, the Hardy-Weinberg

equilibrium, perfect phylogeny to combinatorially constrain the possible

haplotypes. See the full paper 4 for a detailed survey of the literature.

For a genotyping method to be able to correctly determine the phasing

between neighboring polymorphic markers in every individual haplotype

map, it must ultimately be able to test single DNA fragments containing 2

or more heterozygous polymorphic markers in a single test. It is possible,

of course, to assemble individual haplotype maps by sequencing the indi-

vidual’s entire genome using a modified sequence assembly algorithm 7,9

but the cost of doing this is prohibitivea.

Here, we propose a direct and more cost-effective approach using the

fairly well developed single molecule technology of Optical Mapping.

Each individual haplotype map of restriction sites will only detect a

small fraction of all polymorphisms in the human genome, but using a com-

monly accepted linkage disequilibrium assumption (see4), approximately 8

individual haplotype restriction maps will contain more than the 300,000

SNPs required to infer all other known polymorphisms in the individual

genome. Even with 50 fold data redundancy required, all date required for

8 individual haplotype restriction maps can be collected for under $1000.

2. Problem Formulation

Our problem can be formulated mathematically as follows: We assume that

all individual single molecule DNA fragments are derived from a diploid

genome (ignoring the case of sex chromosomes) with two copies of homol-

ogous chromosomes. Each DNA fragment is further mapped by cleavage

with a restriction enzyme of choice and imaged by an imaging algorithm

to produce an ordered sequence of “restriction fragment lengths” or equiv-

alently, “restriction sites.” The variations in these restriction fragment

lengths are primarily due to RFLPs as well as SNPs at the restriction sites.

Additionally, there are further variations introduced by the experimental

aThis cost has been estimated to be over $10 million per individual.
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process and could be assumed due to: sizing errors, partial digestion, short

missing restriction fragments, false cuts, ambiguities in the orientation,

optical chimerisms, etc. Thus, the genomes may be represented as two

haplotype restriction maps, H1 and H2, for the same individual which dif-

fer only slightly from a genotype restriction map H by a small number of

short insertions, deletions and SNPs that coincide with restriction sites. All

such maps, H , H1 and H2, are assumed to be representable as a sequence

of restriction sites (e.g. H2,i, with indices 0 ≤ i ≤ (N + 1), where H2,0

and H2,N+1 represent the chromosome ends), but are unknown. However,

short DNA fragments of around 500 Kb derived from such maps, and fur-

ther corrupted by experimental noise processes can be readily generated at

high throughput and very low cost using a technology like Optical Mapping

(see the full paper 4, and additional references therein). These short DNA

fragments will be written as Dk, with indices 1 ≤ k ≤ M , where M is the

number of data fragments and each data fragment is in turn represented

as a sequence of restriction sites (e.g. Dk,j , 0 ≤ j ≤ mk + 1 ) and can be

aligned globally to create an estimate of genotype map H using algorithms

described previously 2.

The algorithmic problem, we wish to study, is to further separate H

into two maps H1 and H2 in such a manner that each data fragment Dk is

aligned well to one haplotype or other and that H1 and H2 differ from H

only by modifications consistent with SNPs or RFLPs polymorphisms.

Thus, ultimately, this problem corresponds to a problem of refining a

multiple map alignment into two families, starting with one global align-

ment. A combinatorial generalization, where the number of such families is

arbitrarily large (k > 1) and the cost of each alignment is arbitrarily uncon-

strained, has been shown to lead to computationally infeasible problems.

See 8 for the proof of NP-completeness as well as a probabilistic analysis to

show conditions under which the problem can be solved efficiently with a

probability close to one. The key to an effective solution of these problems

relies on careful experiment design (e.g., choice of coverage, restriction en-

zyme, experimental conditions, etc.) to ensure conditions under which a

polynomial time probabilistic algorithm will work with high probability in

conjunction with a Bayesian error model that encodes the error processes

properly.

To construct individual haplotype maps from Optical Mapping data we

use a mixture hypothesis of pairs of maps H1 and H2 for each chromosome,

corresponding to the correct restriction map of the two parental chromo-

somes. We first assemble the data into a regular map of the entire genome
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and use this assembly to separate the data into distinct chromosome sets:

all maps from the same chromosome belonging to a pair will be included

in the same set. We then use a probabilistic model of the errors in the

data to derive conditional probability density expressions f(Dk|H1) and

f(Dk|H2), and apply Bayes rule to maximize a score for the best alignment

with respect to proposed H1 and H2, Equation 1.:

f(H1, H2|D1, . . . , DM ) ∝ f(H1, H2)f(D1, . . . , DM |H1, H2) (1)

The first term on the right side is the prior probability of H1 and H2 and

we just use a low prior probability for each polymorphism (difference in

H1 vs. H2). For the conditional probability term, we can assume each map

is a statistically independent sample from the genome and that the mapping

errors are drawn from i.i.d. distributions and hence write:

f(D1, . . . , DM |H1, H2) =

M
∏

k=1

[f(Dk|H1) + f(Dk|H2)]

2
(2)

The conditional terms of the form f(Dk|Hi) above can be written as a

summation over all possible (mutually exclusive) alignments between the

particular Dk and Hi, and for each alignment the probability density is

based on an enumeration of the map errors in the alignment and multiply-

ing together the probability associated with each error under some suitable

error model. The exact form of the error models suitable for Optical Map-

ping is described in the next section, but for almost any error models used

the sum of the probability for all alignments can be computed effectively

using dynamic programming.

Other methods for assembling Optical Mapping data for relatively short

clones into ordered restriction maps exist, as detailed in the full paper 4, but

they only focus on genotyping, and with widely varying degrees of success.

See the full paper 4 for a detailed survey of the literature. We believe

that this paper describes the first published algorithm for assembling single

molecule data into haplotype maps.

3. Algorithm

Following theorems form the basis for computing various conditional prob-

abilities for a hypothesis.

Theorem 3.1. Consider an arbitrary alignment between the data D and

the hypothesis H, J th restriction site of D matching the Ith restriction site

of H. We will denote this aligned pair by J 7→ I.
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Figure 1. To define the notation required we consider a single arbitrary alignment
between a particular data D and hypothesis H. Recall that N is the number of restriction
sites in H and m the number of restriction sites in D. Any arbitrary alignment between
D and H can be described as a list of pairs of restriction sites from H and D that
describes which restriction site from H is aligned with which restriction site from D.
As an example, Here the alignment consists of 4 aligned pairs (4, 2), (5, 2), (I, J) and
(P, Q). Notice that not all restriction sites in H or D need be aligned. For example
between aligned pairs (I, J) and (P, Q) there is one misaligned site on H and D each,
corresponding to a missing site (false-negative) and extra-site (false-positive) in D. In
this alignment a true small fragment between sites 4 and 5 in H are missing from D,
which is shown by aligning both sites 4 and 5 in H with the same site 2 in D. Note that
if two or more consecutive fragments in H are all missing in D, this would be described
by aligning all sites for the missing fragments in H with the same site in D (rather
than showing only the outermost of this set of consecutive sites in H aligned with D,
for example). The expression for the conditional probability density of any alignment,
such as the one here, can be written as the product of a number of probability terms
corresponding to the regions of alignment between each pair of aligned sites, plus one
probability term for each unaligned region at the two ends of the alignment.

Let the probability density of the unaligned portion on the left and right

end of such an alignment be denoted by fur(I, J) on the right end if J 7→ I

is the rightmost aligned pair, and ful(I, J) on the left end if J 7→ I is the

leftmost aligned pair.

In addition, the following probability density functions fm and fa denote

the following:

fm(I, P ) = Pr[H [I..P ] is missing in the observed data D].

fa(I, J, P, Q) = Pr[H [I..P ] is an aligned region but not a

missing fragment with respect to

the observed data region D[J..Q]].

We assume that I < P and J < Q.
Then the following holds:

f(D|H) =
N

X

I=1

m+1
X

J=0

ful(I, J)f(D[J..m + 1]|H [I..N ] ∧ J 7→ I).
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f(D[J..m + 1]|H [I..N ] ∧ J 7→ I)

= fur(I, J) + fm(I, I + 1)f(D[J..m + 1]|H [I + 1..N ] ∧ J 7→ (I + 1))

+
N

X

P=I+1

m+1
X

Q=J+1

fa(I, J, P, Q)f([Q..m + 1]|H [P..N ] ∧ Q 7→ P )

In particular, if the intermediate values are kept in a DP table Asuf [I, J ]

Asuf [I, J ] = f(D[J..m + 1]|H [I..N ] ∧ J 7→ I)

then it is easily seen that f(D|H) can be computed exactly in O(m2N2)

time and O(mN) space, assuming that fm and fa are O(1) time functions

and ful and fur are O(N) time functions. �

In a later section we will see how to reduce the complexity to linear time

when we only require an ǫ-approximate value f̃

f(D|H) − ǫ < f̃(D|H) < f(D|H) − ǫ,

for the probability density function arising in the context of optical mapping

as follows:

fm(I, I + 1) = PHI+1−HI

ν

fa(I, J, P, Q) = λQ−J−1Pd(1 − Pd)
P−I−1

(1 − Pν)HP −HI G(HP −HI ),σ2(HP −HI)(DQ − DJ),

where Pd = the digest rate, λ = the false-positive site rate, σ2h = the

Gaussian sizing error variance for a fragment of size h, Pν = the proba-

bility of missing a fragment of unit size, and Re = the breakage rate of

DNA (the inverse of the expected fragment size). For a random variable

x following a Gaussian distribution N(µ, σ2), the probability density value

at d is Gµ,σ2(d) = exp[−(d − µ)2/2σ2]/(
√

2πσ).

The exact form of the functions for ful and fur for Optical Mapping

are complicated, but do not affect the complexity of the algorithm; thus a

detailed discussion is omitted here, but can be seen in the full paper 4. The

key assumption required is that ful and fur permit O(1) ǫ-approximation.

As it has been shown elsewhere 1, a good approximate location of the

best alignment between D and H can be determined in O(1) expected time,

if the conditional probability density has been previously evaluated for a

similar H or alternatively, through a geometric hashing algorithms. Only
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a O(1)-width band of the DP table needs to be evaluated to compute an ǫ-

approximation f̃(D|H). In particular, the band width of the DP table used

in practice is usually about ∆ = 8; more generally for Optical mapping ∆

is bounded by

(1 − Pd)
∆−1 = ǫ, or ∆ = 1 +

ln(ǫ)

ln(1 − Pd)
.

With this approach we achieve a reduced time complexity of O(min(m, N))

(more explicitly, O(min(m∆3, N))).

Now we show how we may recompute conditional probabilities for a

modification to hypothesis: How can one re-evaluate the conditional prob-

ability distribution function, f(D|H ′ = p(H)) when the new hypothesis,

H ′, has been obtained by locally changing H in just one place (correspond-

ing to a polymorphism). There are three cases to consider. We study one

of the three cases here in detail and refer the reader to 4 for the remaining

cases. The omitted cases are similar but tedious.

We may obtain H ′ by

(1) Deleting one of the existing restriction sites in H , as the site may

contain a heterozygous SNP;

(2) Adding a new restriction site at a specified location in H , symmet-

rical to the previous case;

(3) Increasing or decreasing a restriction fragment length in H , an

RFLP;

Consequently, we may also need to compute the first and second deriva-

tive of f(D|H) relative to the change in any fragment size in H .

Theorem 3.2. Consider an arbitrary alignment between the data D and

the hypothesis H, J th restriction site of D matching the Ith restriction site

of H. Using the notations of the previous discussion, we write:

Asuf [I, J ] = f(D[J..m + 1]|H [I..N ] ∧ J 7→ I),

and

Apref [I, J ] = f(D[0..J ]|H [1..I] ∧ J 7→ I).

Then

Asuf [I, J ] = fur(I, J) + fm(I, I + 1)Asuf [I + 1, J ]

+

N
∑

P=I+1

m+1
∑

Q=J+1

fa(I, J, P, Q)Asuf [P, Q],
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and similarly,

Apref [I, J ] = ful(I, J) + Apref [I − 1, J ]fm(I − 1, I)

+

I−1
∑

P=1

J−1
∑

Q=0

Apref [P, Q]fa(I, J, P, Q),

If H \ {HK} is obtained from H by deleting the site HK , then

f(D|H \ {HK})

= Pr[Alignments with rightmost aligned I < K]

+ Pr[Alignments with leftmost aligned J > K]

+ Pr[Alignments with a fragment spanning H [K − 1..K + 1]]

=

K−1
X

I=1

m+1
X

J=0

Apref [I, J ]f
(−Hk)
ur (I, J) +

N
X

I=K+1

m+1
X

J=0

f
(−Hk)
ul (I, J)Asuf [I, J ]

+IK<N

m+1
X

J=0

Apref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

m+1
X

J=0

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd
Asuf [P, Q],

where f
(−Hk)
ul and f

(−Hk)
ur are computed respectively from ful and fur by

suitable simple modifications.

Then it is seen that f(D|H \ {HK}), ∀K 1 ≤ K ≤ N , can be computed

exactly in O(m2N2) time and O(mN) space, assuming that fm and fa are

O(1) time functions and ful and fur are O(N) time functions.

If we only wish to compute an ǫ-approximation f̃ , for some consecu-

tive range of m different K values, one can compute these m probabilities

f(D|H \ {HK}) for each kind of modification in O(min(m, N)) time 4.

3.1. Search Algorithm for Haplotypes

The recurrence equations of the previous subsections and the dynamic pro-

gramming algorithms based on those allow us to efficiently compute the

posterior probability for a single possible pair of maps H1 and H2 and their

modifications
[

H
(0)
1

H
(0)
2

]

⇒
[

H
(1)
1

H
(1)
2

]

⇒
[

H
(2)
1

H
(2)
2

]

⇒ · · ·
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The computationally expensive part of computing the haplotype map algo-

rithm is the search over possible maps H1 and H2 in order to find the one

with the highest posterior probability.

Initially, we assume that a single genotype map hypothesis H has been

computed and it has been determined that H best matches all data. The

algorithms to compute such maps have been developed 3,2 and have been in

use for more than five years. The speed of the main algorithm, GenTig, has

been improved through an important heuristic stage that relies on geometric

hashing to quickly identify the maps that overlap, and can also be used in

the context of haplotyping. The time complexity of this geometric-hashing-

stage is super-linear and is given as

TH = O(N + M
4/3
D ), where MD =

M
∑

j=1

mj + 1,

i.e., MD is the total number of fragments in the optical mapping data.

We will see that the actual time for this stage TH is dominated by the

remaining computation involving search over possible haplotype pairs H1

and H2, unless the genome we are dealing with is much larger than the

human genome; see next subsection.

If our initial hypothesis is H , then H
(0)
1 = H

(0)
2 = H , and at each stage

H
(i)
1 and H

(i)
2 must then be refined by trying to add or delete restriction

sites and by adjusting the distance between restriction sites by doing a gra-

dient optimization of the probability density of all maps for each fragment

size. The result is H
(i+1)
1 and H

(i+1)
2 .

Note that at each hypothesis-recomputation step, trying each new re-

striction site polymorphism involves modifying H1 or H2 by adding or delet-

ing a restriction site from H1 (or H2) only, while trying an RFLP involves

modifying the same interval in both H1 and H2 by adding some δh to H1

and subtracting the same δh from H2. In each case both possible “phases”

of each polymorphism is to be accounted for, reversing the use of H1 and

H2 above. Since both phases must be tested and the better scoring one

selected, except when adding the first polymorphism to H1 and H2, the

search process can easily turn in to 2O(N).

Note also that if the data cannot allow the phasing to be determined

because there are no (or insufficient) data molecules spanning both poly-

morphisms, both phases (orientations) will score almost the same. This fact

is also recorded since it marks a break in the phasing of polymorphisms.

Further note that RFLP polymorphisms are more expensive to score,

since in addition to the phasing (whether H1 or H2 has the bigger fragment)



September 24, 2004 0:51 Proceedings Trim Size: 9in x 6in amm12a-procs9x6

it is necessary to determine the amount of the fragment size difference for

H1 and H2 (the δh value), which can be searched for in O(1) expected

time, and the constant is essentially logarithmic in the ratio of the expected

fragment length to the resolution of optical mapping. More precisely, this

step involves trying a number of different multiples of δh values that is

logarithmic in the number of total possible values using the well known

unimodal function maximization algorithm based on the golden mean ratio.

As an example, the total number of δh values required for any fragment

can be bounded by about 20 if the resolution of δh is set at 0.1Kb and

the largest restriction fragment length is 50Kb; usually, this number is

extremely small: just 1 or 2 small δh values are sufficient to verify that no

polymorphism exists.

A purely greedy addition of polymorphisms to H1 and H2 is not suffi-

cient to get the phases correct as the search can get stuck in local maxima

when two or more polymorphisms are nearby. We avoid this problem by

using a heuristic look ahead distance of w restriction sites, and scoring all

combinations of polymorphisms in this window, before committing the best

scoring set of polymorphisms in H1 and H2. With a sufficiently large win-

dow size w, the fraction of the polymorphic sites the algorithm misses or

phases incorrectly can be made negligible. Since this heuristic can increase

the worst case complexity of the algorithm exponentially with the window

size w we heuristically determine the smallest possible window w by using

simulated data and search the space of possible polymorphisms within a

window by adding/deleting just one or two polymorphisms at a time until

no further improvement in the probability density occurs.

The overall algorithm must try every possible restriction site and frag-

ment as a possible polymorphic SNP or RFLP respectively using a rolling

window of size w restriction sites. This process must be repeated a few

times until no further polymorphisms are detected. Typically just two to

three iterations of scanning all restriction sites suffice.

The overall complexity of the basic haplotype search algorithms de-

scribed here, just using the basic DP algorithm from Theorem 3.1, is

O(M2
D/C + N), where C = coverage and C = (1/N)

∑M
j=1 mj. Several

simple tricks to speed up the evaluation of conditional probabilities, cou-

pled with a judicious applications of dual DP tables ultimately improves

the asymptotic time complexity to O(MD). Detailed analysis is in the

full-paper 4.
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4. Empirical Results

In this section, we summarize experiments constructing a haplotype map

of T. pseudoana and of a 120 Mb region of the human chromosome to

demonstrate the feasibility and relevance of our approach. Finally, we also

summarize results based on simulation to provide insight into the accuracy

of our results. See the full-paper 4 for a detailed description of these studies.

• The optical mapping data for T. Pseudoana (Diatom) was ana-

lyzed by our algorithm; for all except chromosome 19, it successfully

phased all polymorphisms and generated two separate maps.

• Our algorithm found 233 restriction site polymorphisms and 12 frag-

ment length polymorphisms in the human chromosome 4 data, and

was able to phase all polymorphisms into 2 contiguous regions. The

nature of the polymorphisms detected was somewhat surprising and

is discussed in details in the full paper 4.

• The simulated data, with statistical characteristics derived from hu-

man chromosome 21, was assembled using different data redundancy

of 6×, 12×, 16×, 24×, 50× and 100× (per haplotype). The results

are summarized in Table 1. From the simulated data we can infer

that 16× redundancy is required to eliminate most errors in SNPs

and about 50× redundancy is required to eliminate most errors in

indels (RFLPs)

Redundancy fp fn fp fn Phase Molecules

SNPs SNPs RFLPs RFLPs err

6x 5 5 1 18 7/26 30
12x 4 2 4 16 2/55 60
16x 2 1 0 12 2/71 80
24x 2 1 1 11 3/111 120
50x 0 1 1 5 4/228 250

100x 0 0 2 1 2/441 500

Figure 2. Haplotyping algorithm performance for 16 SNPs and 24 RFLPs.

5. Discussions and Future Work

Single molecule mapping technologies, such as Optical Mapping, are

ideal for detecting genetic markers with phasing information and without

population-based assumptions. It elegantly circumvents many problems
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that have proven unsurmountable in all other population-based approaches

(see discussion in 4).

Furthermore, we estimate that our approach is currently the only ap-

proach that can produce a genome wide individual haplotype map for un-

der $1000 (based on 8 restriction enzyme haplotype maps). The dominant

SNP based approach requires testing of about 300,000 SNPs which costs

at least ten times more per person. Our approach can be applied to other

single molecule mapping technologies. When applied to single molecule

technologies to map short 6–8bp LNA hybridization probes, it can be used

to sequence the entire human genome: With 50× coverage the location of

probes can be determined to within about 200bp. Hence well known er-

ror tolerant SBH (Sequencing by Hybridization) algorithms 6 can be used

to determine the sequence within any 200bp window from maps of a uni-

versal set of about 2048 probes of 6bp, allowing a draft quality individual

haplotype sequence to be assembled for about $20,000.
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