
Sequence Analysis With the Kestrel SIMD Parallel Processor

Leslie Grate, Mark Diekhans, David Dahle and Richard Hughey

Department of Computer Engineering

University of California, Santa Cruz, CA 95064

fleslie,rphg@cse.ucsc.edu www.cse.ucsc.edu/research/kestrel

Abstract

Computer aided sequence analysis is a critical aspect of current bi-

ological research. Sequence information from the genome sequencing

projects �lls databases so quickly that humans cannot examine it all.

Hence there is a heavy reliance on computer algorithms to point out the

few important nuggets for human examination. Sequence search algo-

rithms range from simple to complex, as does the representation of the

biological data. Typically though, simple algorithms are used on the

simplest of data representations because of the large computational de-

mands of anything more complex. This leads to missed hits because the

simple search techniques are often not suÆciently sensitive.

Here we describe the implementation of several sensitive sequence

analysis algorithms on the Kestrel parallel processor, a single-instruction

multiple-data (SIMD) processor developed and built at UCSC. Perfor-

mance of the Smith-Waterman and Hidden Markov Model algorithms,

with both Viterbi and Expectation Maximization methods ranges from

6 to 20 times faster than standard computers.

Keywords: Sequence analysis, Smith-Waterman, Hidden Markov models,
SIMD parallel processing.

1 Introduction

The most familiar sequence analysis algorithm is BLAST 1, a very fast serial-
machine sequence search algorithm. It is popular because it is fast and is
available for use over the world-wide-web via a simple user interface. The out-
put from a BLAST search is a score and an \alignment" between the input
query sequence and the \good" hits found in the searched database. However,
BLAST is a search algorithm, not an alignment algorithm, so these \align-
ments" are not as high quality as could be. More importantly, distantly re-
lated sequences that would be found by a true sensitive alignment algorithm
are missed.2

aThis work was supported in part by NSF grant EIA-9905322.

Pacific Symposium on Biocomputing 6:263-274 (2001)

Alignment algorithms such as Smith-Waterman3 (SW) and Hidden Markov
models 3;4 (HMMs) require more computational e�ort and hence are not nor-
mally used to directly search databases. This leads to a conundrum | we
want to search databases with a sensitive search method such as an alignment
algorithm, but we do not because of the extra computer time needed.

This computational bottleneck can be relieved by specialized computer
hardware designed to run these algorithms eÆciently. Here we describe our
use of the UCSC Kestrel parallel processor, a single instruction multiple data
(SIMD) 8-bit processor designed and built at UCSC, on these alignment algo-
rithms. While Kestrel was designed primarily for these algorithms, it was also
designed to be as versatile as possible.5 In addition to achieving high perfor-
mance on these algorithms, Kestrel also accelerates a number of other applica-
tions, such as combinatorial chemistry �ngerprint searching, neural networks
and graph algorithms. The performance improvement over standard high-end
serial computers can be as high as a factor of 20.6;7;8

2 Kestrel

The Kestrel Parallel Processor is currently implemented as a single-board sys-
tem with 512 processing elements (PEs) shown in Figure 1. The system is
composed of the PE array, an array controller, instruction memory, a PCI in-
terface unit, and input and output queues to provide synchronization with the
PCI bus. The system runs on WindowsNT, OSF, and Linux hosts with no
signi�cant performance di�erences.

Kestrel is a SIMD (single-instruction stream, multiple-data stream) paral-
lel processor. Instructions are broadcast to the array but PEs can be indepen-
dently turned on and o�. Every clock cycle, each of the 512 PEs that is \on"
performs the broadcast instruction on its local data. The PEs are connected
linearly, each able to communicate with its left and right neighbors. Data can
be fed in or collected at either end of the array, or broadcast by the controller
to all processing elements. The PEs are small to keep the array physically
small. The array has an 8-bit (1 byte) word size, and each PE has 32 registers
and 256 bytes of local SRAM (static random access memory). The PE can per-
form most standard arithmetic/logic functions, has an integrated minimizer,
a signed 8� 8 multiplier and support for eÆcient multi-byte arithmetic. Each
full custom VLSI Kestrel chip contains 64 identical PEs, Figure 2.

SIMD machines broadcast the same control signals to all processors in
the array. For the highest eÆciency, all data should be treated the same.
The standard serial computer language if-else statement allows one of two
parts of a program to execute: however in SIMD machines the if condition

Pacific Symposium on Biocomputing 6:263-274 (2001)

PE PE PE PE PE

Instruction
Memory

Instruction
Memory
Control

Output
Queue
Control

Input
Queue
Control

Output
Queue
Contrl

Queue
Input

Queue
Output

Instruction

Controller

Input
Queue

Array
Control

Control

PCI Bus

Array Control

Host

Kestrel

Figure 1: The Kestrel single PCI board system. (Left) A picture of the board. The PCI bus

interface is in the upper right, center is the FPGA controller, and on the left side are the 8

Kestrel array chips. (Right) Kestrel system block diagram. Once a program is loaded into
the controllers memory, database data is fed to the array through the input/output queues.

This board functions in IBM pc's and DEC (Compaq) alphas.

REG
MULT SRAMALUBUS

Figure 2: The Kestrel VLSI chip containing 64 identical PEs and the oor plan for each PE.

is parallelized, so that PE's that have a TRUE condition are \on" and execute
the if part code, while the PE's that will operate the else part are \o�".
Inversion of \on/o�" conditions activates the else part. Thus, all PE's see all
instructions, but only execute some of them. Conditional statements on SIMD
machines lead to increased rather than reduced instruction counts.

Kestrel must be plugged into a PCI bus in a host computer. We have two
operational host types, older DEC Alpha's running the OSF operating system
and standard PC's running both WindowsNT and Linux. The compute power
of the host is not a factor for operation of the Kestrel boards, and cheap
300Mhz PC's perform equally to the Alpha.

Pacific Symposium on Biocomputing 6:263-274 (2001)

WL-PRH

I P HAWx
x
W
L
P
R
H

WIAP-H

b

I P HAWx
x
W
L
P
R
H

|:.|.|
a

Figure 3: Small alignment example and resulting score matrix. The matrix lower right-hand

element contains the score of the best alignment. In the alignment, | indicates a match, :

a mutation, and . is delete (with respect to the top sequence) if the lower sequence has a

- and insert if the upper sequence has a -. The left matrix is an example of the one best

path (Viterbi) method matching this alignment, but maybe L should match A and I be the
one that is deleted (both paths are shown in the right matrix), and biologically maybe this

region of the sequence is not that important. In this case, the Expectation Maximization

(EM or all paths) method would consider all paths through the cost matrix, including both

these options.

3 Alignment Algorithms

We have implemented the scoring part of the Smith-Waterman and Hidden
MarkovModel3;4 (both Viterbi and Expectation Maximization methods) align-
ment algorithms on Kestrel.

These alignment algorithms address the general problem of string-matching
in the context of biological sequence data. The goal is to quantify or score
\the" relationship between two strings. This is not well-de�ned, so di�er-
ent algorithms quantify di�erent relationships. The fundamental assumptions
these algorithms are based on are that the linear order of the characters mat-
ters, and that each character in a string can be analyzed independently from
the others in that string. Characters are compared character-by-character
with 3 possible outcomes: Match/Mutation, Delete, and Insert, and all possi-
ble con�gurations consistent with the linear order are examined using a two-
dimensional matrix. Interrelated recurrence equations succinctly de�ne the
algorithm. A forward pass through the algorithm de�nes a two-dimensional
matrix of scores and produces the score of the best alignment. The actual
correspondences are then found by backtracking through this matrix. Figure 3
shows a small example of this matrix and a common method of showing an
alignment. The two strings being compared are placed along the horizontal and
vertical axes. Match/mutations occur along diagonals, inserts along vertical
and deletes along horizontal.

At every matrix element, 3 values are computed corresponding to the best
score so far if the characters de�ning the matrix element are matched, in-

Pacific Symposium on Biocomputing 6:263-274 (2001)

serted or deleted. At the end of the algorithm, the lower right hand matrix
element will contain the overall best score. This technique of using a matrix
to eÆciently solve recurrence equations is called dynamic programming. The
following describes the Smith-Waterman algorithm:

Ii;j = max

�
Ii�1;j + c

Mi�1;j + g
Di;j = max

�
Di;j�1 + c

Mi;j�1 + g

Mi;j = max

8>><
>>:

Ii�1;j�1 + d(ai; bj)
Di�1;j�1 + d(ai; bj)
Mi�1;j�1 + d(ai; bj)
0

where d(ai; bj) is the cost of matching character ai to bj , g is the cost of starting
a gap, and c is the cost of continuing a gap. The inclusion of the the constant 0
in the Match equation implements \local" scoring, meaning that the algorithm
�nds the best matching sub-strings. This is a desirable feature for biological
sequence alignment. Without the constant 0, the equations implement \global"
scoring, where the best match is found for both strings in their entirety.

HMMs generalize the above equations.4 The query sequence is generalized
to a more complicated structure, called a \model" (the model part of HMM),
that can statistically describe a group of sequences rather than just a single
sequence. The characters in the sequence are generalized to \nodes" that
contain position-speci�c match tables (the d(ai; bj) values) and also a table for
insert, instead of the global g and c. Between the nodes are transition costs. A
small model is shown in Figure 4. The equations de�ning HMM Viterbi global
scoring are:

Ii;j = e(Ij ; xi) + min

(
Mi�1;j + tr(Mj ; Ij)

Ii�1;j + tr(Ij ; Ij)

Di�1;j + tr(Dj ; Ij)
Di;j = min

(
Mi;j�1 + tr(Mj�1;Dj)

Ii;j�1 + tr(Ij�1;Dj)

Di;j�1 + tr(Dj�1; Dj)

Mi;j = e(Mj ; xi) +min

(
Ii�1;j�1 + tr(Ij�1;Mj)

Di�1;j�1 + tr(Dj�1;Mj)

Mi�1;j�1 + tr(Mj�1;Mj)

Additions into the above equations implement Smith-Waterman-style Viterbi
Local Scoring: 9

Mi;j = min

�
Mi;j

Jini;j
Jini;j = Jini;j +NullT r(I; I) +NullE(I; xi)

if NOT (FirstTwoModelNodes) then Jouti;j = min

�
Jouti�1;j�1

Mi;j

if (LastModelNode) then Di;j = min

�
Di;j

Jouti�1;j�1

Pacific Symposium on Biocomputing 6:263-274 (2001)

Is

BEGIN

I1

Y
W

V

T
S

R

Q

P

N

M
L

K

I

H

G

F

E
D

A

1

I2

Y
W

V

T
S

R

Q

P

N

M
L

K

I

H

G

F

E
D

A

2

I3

Y
W

V

T
S

R

Q

P

N

M
L

K

I

H

G

F

E
D

A

3

I4

Y
W

V

T
S

R

Q

P

N

M
L

K

I

H

G

F

E
D

A

4

END

Figure 4: A tiny SAM HMM. The large rectangles with the amino acid distributions are

the Match states, the circles are Delete and diamond is insert. The transitions are the lines

between the states. Each state has 3 in and 3 out transitions in the left-to-right direction.

Inserts have amino acid distributions (like Match) which are not drawn. Each vertical group

of Delete, Insert and Match make up a node, with the number noted in the Delete state.

For example, you can leave a match state and go into the insert directly above (in the same

node) or the delete or match of the subsequent node.

where tr(s1; s2) is a per-node 3x3 matrix of transition costs (the lines connect-
ing nodes in Figure 4), e(s; c) is a per-state alphabet-sized array of emission
costs (the Match and Insert amino acid distributions). For Local scoring,
Jin(s) and Jout(s1; s2) are the jump-in and jump-out costs and NullT r and
NullE are the null model transition and emission costs (equivalent to 0 in the
SW equations). As these equations use min, they implement the Viterbi or
single-path method, the result being the score of the one best path through the
cost matrix (as in Figure 3). The more sensitive Expectation Maximization
(EM) method replaces min with sums of probabilities and the sums with mul-
tiplication of probabilities. The resulting score is the sum of the probabilities
of all paths through the cost matrix, leading to the increased sensitivity of this
method to distantly related sequences. The right hand cost matrix in Figure 3
is a tiny illustration of this. Suppose the biologically important parts of the
sequence are the WPH and the rest does not matter. Then what really should
be scored are the WPH, and the other letters should not be included. EM does
this by including in the score all paths, so it would not matter how the IA and
L are aligned. The Viterbi method must choose exactly one path, so the score
will be less than the EM score.

The dynamic programming calculation easily maps to a linear array of
processing elements and was the main reason for much of Kestrel's design.7

A common mapping is to assign one PE to each character/node of the query
string/model, and then to shift the database through the linear chain of PEs.
As shown in Figure 5, the query is loaded into the PE array along with the d or
e & tr values, and the database streamed through. The query is indexed by j

Pacific Symposium on Biocomputing 6:263-274 (2001)

A C
1 2 3

Q

query, PE

PE 1 PE 3PE 2

local score
data, tables...

A T A D
database

1234i =

results

j =
1 2 3

D1

3

2

j, query, PE

a

b

a

db
i

AA A

D D

T T T

Figure 5: Left shows the mapping of the recurrence equations to the Kestrel PE array

architecture. The query is loaded into the array, and stays �xed for the rest of the run. The

database is streamed through. The query is indexed by j and sequence in the database by i.

The recurrence only needs values that are easily available in neighboring PE's. Right shows
how this mapping operates over time as the database is fed through it. The calculation

proceeds along the diagonal of the query by database-sequence matrix. The center PE needs

to use values from i � 1; j (for Insert, above), i; j � 1 (for Delete, left) and i � 1; j � 1 (for

Match, left above diagonal). The left and above values have just been computed the previous

cycle, but the diagonal element (match) was computed two cycles ago, so it must be saved.

This is done by having alternate storage locations for the match values, labeled as a (solid

line) and b (dashed line). The a phase uses the diagonal a value, and the b phase uses the

diagonal b value.

and sequence in the database by i. Neighboring PEs store the �1 values needed
by the equations. With this mapping our implementations compute along the
diagonal of the matrix of query (mapped to PE) by database sequence, Fig-
ure 5. Queries longer than the 512-PE array length can be handled by storing
several adjacent characters in each PE's local memory. When one is scoring a
number of queries against a database, part of the array is wasted unless the
queries �ll the array. The utilization of the array is improved by packing in
as many queries as can �t because the overhead to keep the scores separate
and extra output requirements are less than running each query separately.
The twin problem of sequence alignment, �nding the minimizing correspon-
dence between two sequences, requires the saving of the selector bits of the
minimizations and recirculation of sequence data 10, which we do not presently
do.

We have implemented 6 main variants of the HMM algorithm on Kestrel.
These are Viterbi Global 32-bit, Viterbi Local 32-bit, Viterbi Local 24-bit,
Viterbi Local Multiple models 24-bit, EM Global 32-bit and EM Local 32-
bit. The 24-bit algorithms require fewer instructions at the cost of loss of
dynamic range. Mathematical overow is a problem in the 24-bit HMM code,
and those implementations perform overow checking, so that when a value
gets large, it stays large and does not wrap around. The EM method requires

Pacific Symposium on Biocomputing 6:263-274 (2001)

multiplications, which Kestrel can handle because each PE has a multiplier.
Smith-Waterman has enough dynamic range using only 16-bit values and our
implementations support query lengths to 2555.

All these implementations have the same form: Initialization, Loading the
query/model, and streaming the database through Kestrel iterating compu-
tation with result output. One result score is produced for each database
sequence; therefore, there is much more input data than output data. Kestrel
performance is weakly dependent on database composition and is constant
with respect to query/model length (up to query length 511 for HMM's and
modulo 512 for Smith-Waterman).

The Kestrel HMM and Smith-Waterman algorithms have been integrated
into version 3 of UCSC's SAM HMM system.4;11;12 We have a Smith-Waterman
server available at our web site, www.cse.ucsc.edu/research/kestrel.

4 Example Smith-Waterman Code

The Kestrel assembly code in Figure 6 is a (relatively) easy-to-read example
of just the SW recurrence equations using 16 bit values and is not the actual
code used in the system. Each line of assembly code speci�es one or more op-
codes and modi�ers, and an appropriate number of operands, to specify array
functions. The code in actual use is more intricate in how it performs reading
in the database and producing results. Because SW only needs about 20 in-
structions per database character, an extra 1 or 2 instructions is a signi�cant
reduction in speed.

Between every sequence in the database is a special \end of sequence" mark
character. When a PE detects the mark, it must perform extra instructions to
push the result value out (to the right in Figure 5) and then reset the registers
so they are ready for the next sequence. This same type of check must happen
to detect \end of database". While it is straightforward to do these checks in
Kestrel, it adds many extra instructions. EÆciently performing these checks
with the smallest impact on speed is quite tricky. The current implementation
automatically switches between a fast inner loop (19 instructions) and a slow
inner loop (23 instructions), depending on whether or not an \end of sequence"
or \end of database" character is present in any of the active PEs. Because of
this, Kestrel runs a little faster when database sequences are longer than the
query.

Packing multiple query characters in each PE allows longer query se-
quences. Conceptually this is just like adding more PEs to the array, except
these are \virtual" PEs. The query dependent cost tables (d array) and recur-
rence variables are stored in each PEs local memory, and appropriate codings

Pacific Symposium on Biocomputing 6:263-274 (2001)

;; Insert <-- max (Insert+continue,MGC)

add R$Inslo, R$Inslo, $CONTL

smaxc add mp R$Inshi, R$Inshi, $CONTH, R$MGChi

smaxc cmp R$Inslo, R$Inslo, R$MGClo

;; Delete <-- max (Delete+continue,MGC)

add R$Dello, L$Dello, $CONTL

smaxc add mp R$Delhi, L$Delhi, $CONTH, R$MGChi

smaxc cmp R$Dello, R$Dello, R$MGClo

;; Shift the sliding sequence;

;; read a new value from the queue;

;; Lookup the character cost in SRAM

move RSeq, LSeq, qtoarr, read(L$Seq)

;; Match <-- max(MDI+charcost,0)

;; Zero-threshold for local scoring

;; of Smith & Waterman

add L$TMPlo, L$MDIlo, mdr

smaxc add mp L$TMPhi, L$MDIhi, smdr, #0

smaxc cmp L$TMPlo, L$TMPlo, #0

;; Add the gap cost to the Match cost for

;; Delete and Insert calculations

add R$MGClo, L$TMPlo, $GAP_LO

add R$MGChi, L$TMPhi, $GAP_HI

;; Store the best score so

smaxc L$score_hi, L$score_hi, L$TMPhi

smaxc cmp L$score_lo, L$score_lo, L$TMPlo

;; MDI <-- max (Match, Insert, Delete)

;; for future Match calculation.

;; Branch to start of nested loop

smaxc R$MDIhi, L$TMPhi, R$Inshi

smaxc cmp R$MDIlo, L$TMPlo, R$Inslo

smaxc R$MDIhi, R$MDIhi, R$Delhi

smaxc cmp R$MDIlo, R$MDIlo, R$Dello, endLoop

;; mp = multiprecision ALU op

;; cmp = topdown multiprecision comparator op

;; smdr = sign extension of the 1-byte MDR

;; smaxc= signed maximum with operand C

Figure 6: Example core assembly code for Smith and Waterman dynamic programming.

of the recurrence equations are used. Query characters on the \inside" of a
PE never need to use values from another PE because the \adjacent" query
character is in the same PE. Because HMMs have many more variables, we
can only do multiple character packing in SW. The current maximum query
length is 2555, a packing of 5 query characters per PE. Many more are possible
for DNA due to the smaller alphabet; 4 rather than 20 (although with ambi-
guity characters the alphabet is larger). The extra computation is directly
proportional to the number of packed characters plus a tiny bit of overhead.

5 Results

All results here compare a single 20MHz Kestrel board to a 433MHz DEC
(Compaq) Alpha (Alpha 21164 series; the newer 21264 series is twice as fast).

On Smith-Waterman, Kestrel is up to 20 times faster (Table I). This
makes Kestrel slightly slower than the much larger 16K-processor MasPar 6;7

and faster than the similarly sized SAMBA system.13

Table II lists the instruction counts for the current Kestrel implementa-
tions. These are the number of instructions to implement the recurrance equa-
tions followed by the number needed to output results (SW for queries less
than 512 is heavily optimized for speed). EM instruction counts are approxi-
mate (�50) as there are variants that trade o� accuracy for speed. The output
overhead for Multiple Model Viterbi Local 24-bit (VL24multi) is 19 instruc-
tions, plus occasional large bursts of output requiring hundreds of instructions
depending on the size and packing of the models.

Table III lists the throughput of the Viterbi algorithm. Bytes per Second is
a better measure of performance in Kestrel algorithms as Kestrel does not care
about database sequence length. Kestrel performance is constant independent
of model length and database size or composition. The Kestrel speedup is

Pacific Symposium on Biocomputing 6:263-274 (2001)

Table I: Wall time in seconds to SW search a 10Mbase database on the 20MHz Kestrel.

Kestrel 433MHz DEC alpha

Query Size � 512 32 128 512

SW 13 20 73 282

Table II: Cell Instruction Counts.

SW16 VG32 VL24 VL24multi VL32 EMG EML

19/4 73/5 80/5 85/19+ 111/5 �500 �720

Table III: Viterbi Scoring Bytes per Second Time Comparisons.

Length Serial VG Serial VL VG32 VL24 VL32

50 112903 102868 275K 246K 180K

64 92581 78458 275K 246K 180K

128 46290 40252 275K 246K 180K

256 32599 19698 275K 246K 180K

511 22255 9849 275K 246K 180K

Table IV: EM Scoring Bytes per Second Time Comparisons.

Length Serial EMG Serial EML EMG EML

100 21667 17333 28888 22807

250 9167 6833 28888 22807

500 4833 3667 28888 22807

nearly linear with the maximum about 25 when the array is full (model length
around 510) using the Local 24-bit or Global 32-bit. Running multiple models
at the same time in Kestrel, for example two 255 long models, gives a speedup
of 20+ over the two (or more) serial program runs. Multiple models is only
implemented in Local 24-bit because Local database search is more sensitive
than global, so it is prefered.2;12

Table IV lists the throughput for the current EM algorithm. The speedups
here are not as good as in Viterbi. This algorithm requires oating point oper-
ations on 32-bit values of which there are too many to keep in registers leading
to excessive data movement between memory and registers. The maximum
speedup is only about 6.

6 Future

The Kestrel-enhanced SAM system provides signi�cant speed-up for large
database searchs. Iterative methods such as SAM/Target98 12 require several
such searches to complete a single query. Model library vs sequence database
searches are also enhanced for shorter models and should be of interest to
pharmacutical companies. Smith-Waterman search speeds of 1 megabyte-per-
second allow searching 100 megabyte databases (such as the current size of
the non-redundant protein database) in 100 seconds. This is fast enough for
human interactive use.

Pacific Symposium on Biocomputing 6:263-274 (2001)

The 20Mhz Kestrel used here is just the begining. The current Kestrel
VLSI chips are fully operational to 33Mhz and the second generation board
under construction will operate at that speed. This board will have 16 Kestrel
chips, doubling the array length. The new board will also open up new ap-
plications that require on-board memory for storage and/or recirculation of
data through the array. The new controller will be more eÆcent than the
existing one and will add key features that will reduce the overhead associ-
ated with data output. All the algorithms described here will see performance
improvements from these features.

A second generation VLSI chip design in a smaller feature size will allow
both higher clock rates and more PE's per chip, possibly only needing a single
large chip for 500+ PE's and on-chip controller. Then, Kestrel clock rates
should reach into the 150+ Mhz range, leading to data rates on these algo-
rithms at least 10 to 20 times faster. Such a system would truly be a low cost
single-chip plug-in accelerator for sequence analysis.

7 Acknowledgments

We thank the entire Kestrel team for realizing a fully operational system, and
our collaborators and users. The EM code was written by M.Diekhans, and
the original Viterbi Global 32-bit code by D.Dahle. More information about
Kestrel is available on our web site http://www.cse.ucsc.edu/research/kestrel.

8 References

1. S. F. Altshul, W. Gish, W. Miller, M. E. W., and L. D. J., \Basic local
alignment search tool," JMB, vol. 215, pp. 403{410, 1990.

2. J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hub-
bard, and C. Chothia, \Sequence comparisons using multiple se-
quences detect three times as many remote homologues as pair-
wise methods," JMB, vol. 284, no. 4, pp. 1201{1210, 1998. Pa-
per available at http://www.mrc-lmb.cam.ac.uk/genomes/jong/

assess paper/assess paperNov.html.
3. T. F. Smith and M. S. Waterman, \Identi�cation of common molecular

subsequences," J. Mol. Biol., vol. 147, pp. 195{197, 1981.
4. A. Krogh, M. Brown, I. S. Mian, K. Sj�olander, and D. Haussler, \Hid-

den Markov models in computational biology: Applications to protein
modeling," JMB, vol. 235, pp. 1501{1531, Feb. 1994.

5. J. D. Hirschberg, D. Dahle, K. Karplus, D. Speck, and R. Hughey,
\Kestrel: A programmable array for sequence analysis," J. VLSI Sig-

Pacific Symposium on Biocomputing 6:263-274 (2001)

nal Processing, vol. 19, pp. 115{126, 1998.
6. D. Dahle, L. Grate, E. Rice, and R. Hughey, \The UCSC Kestrel gen-

eral purpose parallel processor," Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications,
vol. III, pp. 1243{1249, 1999.

7. R. Hughey, \Parallel sequence comparison and alignment," CABIOS,
vol. 12, no. 6, pp. 473{479, 1996.

8. A. Di Blas and R. Hughey, \Explicit SIMD programming for asyn-
chronous applications," Proceedings of the International Conference on

Application-Speci�c Systems, Architectures, and Processors, pp. 258{267,
2000.

9. C. Tarnas and R. Hughey, \Reduced space hidden Markov model train-
ing," Bioinformatics, vol. 14, no. 5, pp. 401{406, 1998.

10. J. A. Grice, R. Hughey, and D. Speck, \Reduced space sequence align-
ment," CABIOS, vol. 13, no. 1, pp. 45{53, 1997.

11. R. Hughey and A. Krogh, \Hidden Markov models for sequence analysis:
Extension and analysis of the basic method," CABIOS, vol. 12, no. 2,
pp. 95{107, 1996.

12. K. Karplus, C. Barrett, and R. Hughey, \Hidden markov models for
detecting remote protein homologies," Bioinformatics, vol. 14, no. 10,
pp. 846{856, 1998.

13. D. Lavenier, \Speeding up genome computations with a systolic acceler-
ator," SIAM News, vol. 31, no. 8, pp. 6{7, 1998.

Pacific Symposium on Biocomputing 6:263-274 (2001)

