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Instance Based Query Generation is de�ned and applied to the problem of recognis-
ing amino acid residues in medium resolution critical point graphs. The technique
is an amalgamation of Relational Instance Based Learning and Frequent Query
Discovery in First Order Logic. Instances are automatically constructed from a
deductive database and �rst order association rules are derived from the instances.
The initial investigations presented here indicate that the technique is able to dis-
criminate some of the larger amino acid types as well as discriminating the protein
from background solvent. Identi�cation of the smaller amino acids remains di�cult
and requires further work.

1 Introduction

A fundamental goal of research in molecular biology is to understand protein

structure. Protein crystallography is currently the most successful method for

determining the three-dimensional conformation of a protein, yet it remains

labor intensive and relies on an expert's ability to derive and evaluate a pro-

tein scene model. The problem of protein structure determination may be

formulated as an exercise in computational scene analysis 1;2 in which a three-

dimensional image of a protein (the electron density map) is segmented into

a graph of critical points (points where the gradient of the electron density is

equal to zero) 3. At medium resolution, �3 �A, it has been demonstrated that

a peak critical point in the graph generally corresponds to the location of an

amino acid residue along the backbone of the structure 4;5. For larger residues,

peaks may also denote the location of side chain con�gurations. Pass critical

points derived from medium resolution maps correspond to peptide bonds or

to side chain connectivities. Thus, peak/pass traces through a critical point

graph correspond to potential backbone traces for the protein.

Figure 1 illustrates a depiction of a tryptophan residue and examples of

how this residue may be represented as a critical point subgraph resulting from

a topological analysis of an electron density map. In Figure 1(b) the residue is

denoted as one backbone and two side chain peak critical points. Figure 1(c)
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Figure 1: Representations of: (a) tryptophan amino acid residue; (b) critical point sub-
graph for tryptophan containing side chain with two peaks; (c) critical point subgraph for

tryptophan containing side chain with three peaks.
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illustrates an example where tryptophan has two backbone and two side chain

peaks.

The research described in this paper explores the application of instance-

based query generation and learning to the problem of classifying amino acid

residues in a critical point graph. In particular, attributes related to the geo-

metric con�guration of subgraphs (including calculated angles and distances)

along with information obtained from the electron density map (volume and

density of critical points), are derived and used to assist in the identi�cation

of residues.

2 Instance-Based Query Generation

We de�ne instance-based query generation as an amalgamation of methods from

relational instance-based learning 6 and methods from knowledge discovery in

databases. Similar to the system WARMR 7, the goal of instance-based query

generation is to discover frequently occurring motifs and association rules in

deductive databases. Relational instance-based learning can be considered as

a �rst-order logic extension of less expressive propositional logic approaches

(e.g., IB3 8). Methods in instance-based learning generate and store a set of

instances; classi�cation of new instances is performed by the use of a similarity

measure to identify the known instances most similar to the unseen instance.

This is a k-nearest neighbour approach where an unseen example is allotted to

the most similar class. This approach is most common in supervised learning

tasks where an instance is an element of a deductive database represented as a

logic statement corresponding to the collection of all facts required to describe

the instance. For example, Figure 2 illustrates a critical point graph for an

instance of tryptophan along with a query consisting of logical axioms that

describe the instance of the residue occurring in chain a of protein 1dog.

In general, an instance in a deductive database is a conjunction of axioms

associated with a particular entity, where each axiom expresses a relation of

interest for the entity. For example, the �rst axiom in the query declares that

the instance corresponds to a tryptophan (trp) residue and is the sixth residue

in chain a for the protein 1dog. The remaining axioms associate peaks in the

critical point graph with particular atoms in the backbone or side chain for

the tryptophan instance and associate volume, angle and density values with

the individual critical points. For example, the relation peak(1dog, 635, 1.2 -
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(a)

residue(1dog, a, 6, trp),

backbone association(1dog, a, 6, c, 734),

side chain association(1dog, a, 6, ne1, 364),

side chain association(1dog, a, 6, cz3, 635),

peak(1dog, 734, 1.1 - 1.2, 55 - 60),

peak(1dog, 364, 1.4 - 1.5, 50 - 55),

peak(1dog, 635, 1.2 - 1.3, 30 - 35),

edge(1dog, 173, 364, 635, 1.1 - 1.2, 2.6 - 2.8),

edge(1dog, 872, 734, 364, 0.7 - 0.8, 4.0 - 4.2),

angle(1dog, 635, 364, 734, 90 - 120).

(b)

Figure 2: (a) Critical point representation of tryptophan instance, and (b) Logic represen-
tation of instance.
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1.3, 30 - 35) states that peak 635 in the critical point graph for protein 1dog

has a density value in the range 1.2 - 1.3 and a volume in the range 30 - 35.

Note that the numeric values for an instance are discretized in the con-

struction of the axioms that de�ne the instance. For example, the distance

2.65 �A between peaks 364 and 734 for the instance depicted in Figure 2 was

generalized to the range 2.6 - 2.8 �A in the instance declaration. In the con-

struction of these axioms, values for volume, distance density and angle were

split into equal sized categories, with unit increments of: 0.1 electrons for den-

sity; 5 electrons per cubic �A for volume; 0.2 �A for distance, and 30 degrees for

angle.

In our approach to query generation, instances are automatically generated

from a deductive database by declaring a set of modes and types that describe

the contents of the axioms comprising each instance 6. This is a common

method by which systems such as PROGOL and WARMR constrain the search

space for good hypotheses 9. A mode de�nes whether a term in the relation

is an input variable (+); an output variable (-); either an input or and output

variable (+-); or a constant (#). Types de�ne the range of possible values

for the parameters. For example, the type \aa acid" (amino acid) type ranges

over a set of values that correspond to the 20 di�erent amino acids. The

mode and type declarations used in this application conform to those used by

WARMR, where a special mode (keymode) is used to de�ne the database key

for a particular instance. The modes used to express instances of amino acid

residues in a critical point graph are given as follows:

keymode(residue(-pid,-chainid,-rid,#aa acid)).

mode(backbone association(+pid,+chainid,+rid,#atom name,-peakid)).

mode(side chain association(+pid,+chainid,+rid,#atom name,-peakid)).

mode(peak(+pid,+peakid,#density,#volume)).

mode(edge(+pid,-edgeid,+peakid,+peakid,#density,#distance)).

mode(angle(pid,+peakid,+peakid,+peakid,#angle)).

The types for these modes are de�ned in Table 1.

Once the set of instances has been generated for a domain, the next step in

instance-based query generation involves a process where mode terms contain-

ing constants are generalized to variables. The resulting axioms are referred to

as queries. The queries generated by this method are analogous to the bottom

clauses of the re�nement lattice utilised by speci�c to general ILP programs
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TYPE DEFINITION

pid name of protein

chainid letter corresponding to protein chain

rid unique number identifying amino acid residue

aa acid amino acid type

atom name name of atom in peak/atom association

peakid unique peak number

edgeid unique edge number

density electron density

volume number of electrons per cubic �A

distance distance between peaks (in �A's)

angle angle formed by three peaks (in degrees)

Table 1: Types of data used to de�ne amino acid residues in critical point graphs

such as GOLEM10. For example, a generalization of the instance of tryptophan

described in Figure 2 is the query:a:

residue(Pid, Chainid, Rid, trp),

backbone association(Pid, Chainid, Rid, c, Pk1),

side chain association(Pid, Chainid, Rid, ne1, Pk2),

side chain association(Pid, Chainid, Rid, cz3, Pk3),

peak(Pid, Pk1, 1.1 - 1.2, 55 - 60),

peak(Pid, Pk2, 1.4 - 1.5, 50 - 55),

peak(Pid, Pk3, 1.2 - 1.3, 30 - 35),

edge(Pid, Edge1, Pk2, Pk3, 1.1 - 1.2, 2.6 - 2.8),

edge(Pid, Edge2, Pk1, Pk2, 0.7 - 0.8, 4.0 - 4.2),

angle(Pid, Pk3, Pk2, Pk1, 90 - 120).

A goal of our research is to determine frequently occurring motifs in the

data and associate these with individual amino acid residues. A frequency

measure for each query is calculated based on the proportion of instances that

are true for (subsumed by) a given query. Truth of a query can be determined

by invoking the theorem proving interpreter of Prolog.

Once a set of frequently occurring queries has been determined, the �nal

step in instance-based query generation involves deriving query extensions.

These are �rst-order logic representations of association rules that can be used

aNote that variable parameters begin with a capital letter in a query.
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to explain the given queries. This approach to rule discovery is a technique

common to knowledge discovery 11. In deductive and relational databases

association rules de�ne inferences (implications) between the literals or tables

comprising the database.

Following is an example of an association rule that can be used to identify

a tryptophan residue:

lhs( [peak(Pid, Pk1, 1.1 - 1.2, 55 - 60),

peak(Pid, Pk2, 1.4 - 1.5, 50 - 55),

peak(Pid, Pk3, 1.2 - 1.3, 30 - 35),

edge(Pid, Edge1, Pk2, Pk3, 1.1 - 1.2, 2.6 - 2.8),

edge(Pid, Edge2, Pk1, Pk2, 0.7 - 0.8, 4.0 - 4.2),

angle(Pid, Pk3, Pk2, Pk1, 90 - 120)]) ;

rhs( [residue(Pid, Chainid, Rid, trp),

backbone association(Pid, Chainid, Rid, c, Pk1),

side chain association(Pid, Chainid, Rid, ne1, Pk2),

side chain association(Pid, Chainid, Rid, cz3, Pk3)]).

Note that the rule is of the form lhs(:::) ; rhs(:::), which can be inter-

preted as: \if the query forming the left hand side (lhs) succeeds, then the

extended query formed by the conjunction of the left hand side and the right

hand side also succeeds". i.e If LHS then LHS ^ RHS . This interpretation dis-

tinguishes query extensions from de�nite clauses de�ned by implication, where

all instantiations of the right hand side must be true for the de�nite clause to

be true. The association rule states that a subgraph that exhibits the geometry

described in the left hand side of the query extension can be associated with a

tryptophan residue where the three peaks correspond to the atoms c; ne1 and

cz3 in the residue.

We calculate the con�dence of a query extension in order to provide a

probablistic measure of how often the association is true. Con�dence is deter-

mined by comparing the frequency of the extended query with the frequency

of the left hand side of the query7. Frequency is a measure of the proportion of

examples for which a given query succeeds. Query extensions are often used to

classify unseen instances in a supervised learning problem. For the amino acid

residue domain, the con�dence measure describes the probability of a given

subgraph representing the amino acid residue. If a subgraph satis�es the left

hand side of multiple query extensions, then the con�dence measures de�ne a

probability distribution of the possible classi�cations for the subgraph.
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The steps described above for instance-based query generation can be sum-

marized as follows:

1. Generate instances using mode and type declarations.

2. Derive queries for each instance by replacing non-constant terms by vari-

ables (according to the mode and type declarations).

3. Determine query extensions from queries derived in step 2.

4. Calculate a con�dence value for each query extension.

3 Experimental Methods

Instance based query generation was applied to a training set consisting of

the critical point graphs from 12 proteins. These were \ideal" maps generated

from the PDB using the program XTAL and interpreted by the CCRIT pro-

gram. These proteins were selected from di�erent superfamilies and contained

a total of 5826 amino acid residues. The graphs had a total of 13625 peaks and

27449 passes. One query was generated for each residue and equivalent queries

removed before the query extensions were generated. The resulting antecedent

literals were also tested for equivalence to allow the generation of query exten-

sions with disjunctive consequents. Creating disjunctive consequents indicates

how many ways a particular subgraph can be interpreted, and how con�dent

each interpretation is. A total of 1703 of these disjunctive query extensions

were generated from the 5826 amino acids.

Eighteen test proteins were chosen for evaluation of the discovered query

extensions. Each of the proteins was unseen, i.e. was not included in the

training set, and each protein was also an ideal critical point graph. The query

extensions were used to classify the unseen residues by generating a number

of predictions of the subgraphs found. These predictions were generated in a

number of ways:

� All predictions were generated.

� Predictions were generated by randomly allocating the set of subgraphs

to interpretations sorted according to the distribution of con�dences of

the various disjunctive consequents
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� Only those predictions conforming to the consequent with the highest

con�dence were generated.

The test proteins also contain a list of associations with atoms from the

PDB �le from which it was generated. This list was used to evaluate the

predictions generated.

4 Results and Discussion

4.1 Results

Initial investigations calculated the percentage of instances in each test protein

that were found to be equivalent to the queries generated from the training

set. The mean number of equivalent instances is 83.68%, indicating that there

is a limited set of subgraphs that conform to the residues types. Investigation

of the con�dence of the query extensions reveals that many of the subgraphs

may be interpreted in many di�erent ways, often with a low con�dence. Table

2 illustrates the overall con�dence found for each residue type, this gives an

indication of the ability of the set of query extensions to correctly identify a

given residue type. Many of the smaller residues are very di�cult to predict,

but some of the larger types, particularly arginine and tryptophan may be

predicted with greater than 50% accuracy.

The ability of the query extensions to discriminate protein peaks from

non-protein peaks was also undertaken, in an e�ort to determine how often

the query extensions include background solvent. Analysis of the critical point

graphs revealed that up to 40% of peaks may not be part of the protein.

Currently a density cut-o� measure is used to determine protein from non-

protein. The list of peaks corresponding to those subgraphs identi�ed by the

query extensions was consistently more accurate than the list found by the

density cut o�. Indeed a result of 98% accuracy with less than 2% false positives

was achieved in one case.

Classi�cation accuracy of the query extensions was determined using the

test proteins. As predicted by the con�dences listed in table two, the query

extensions performed poorly. If all predictions were generated, the accuracy

could indeed match the percentage of shared cases. However there was an

enormous number of predictions. The probability of a prediction being correct
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residue type overall con�dence residue type overall con�dence

ala 0.012 leu 0.0857

arg 0.552 lys 0.166

asn 0.058 met 0.099

asp 0.039 phe 0.138

cys 0.073 pro 0.048

gln 0.061 ser 0.055

glu 0.116 thr 0.031

gly 0.112 trp 0.579

his 0.136 tyr 0.331

ile 0.062 val 0.050

Table 2: Overall con�dence of predicting each Amino Acid type by using Query Extensions

was about 1% i.e. there were 99% false positives. The other two methods

greatly reduced the number of false positives but classi�cation accuracy fell

to between 4 and 11%. This is only a little better than the 3.5% accuracy

achieved by randomly allocating an amino acid type to any peak.

4.2 Discussion

The low classi�cation accuracy obtained by the query extensions illustrates the

di�culty associated with the identi�cation of individual residues from medium

resolution critical point graphs. However, the high con�dence results for tryp-

tophan and arginine suggest that the query extensions can successfully identify

these larger residue types and may be used to further enhance the performance

of other interpretation techniques such as protein threading. The query ex-

tensions can also be used to preprocess the critical point graphs, allowing the

protein to be distinguished from the background before any interpretation is

undertaken.

There are, however, many issues raised by the development of this tech-

nique. Solving these issue will increase the performance of the technique. Many

instances of the larger residue types were unique or very rare, thus the query

extensions generated from these have a high con�dence but are never actually

used in classi�cation. This results in few predictions of these residue types and

the ability to identify them is poor, despite the high con�dence. Currently

Pacific Symposium on Biocomputing 5:401-412 (2000) 



only smaller subgraphs are classi�ed, and with little con�dence of being in-

terpreted correctly. The larger residue types are thus being classi�ed by the

wrong query extensions. This problem will be addressed by the incorporation

of an inexact matching strategy that computes the similarity between queries.

This development was considered during the development of instance based

query generation, but incorporation of it was not possible for this experiment.

This development will also remove the current need for discretisation of numer-

ical information which also contributes to the poor performance of the query

extensions.

The motivation for the development of instance based query generation

is to avoid the expensive levelwise generation of queries as implemented by

WARMR; by generating instances in a similar way to RIBL; and to avoid

the combinatorial k-nearest-neighbour evaluation of RIBL; where all instances

are stored; by constructing queries and utilising syntactic matching of vari-

ables wherever possible. It is hoped that these improvements will allow the

reasonably e�cient generation of a subsumption lattice of queries with the in-

corporation of inexact matching to compensate for the over-speci�c nature of

larger query extensions.

The experiment itself did not take into account all of the possible inter-

pretations of subgraphs: it assumes that all of the subgraphs found can be

classi�ed only as amino acids. Some investigation of the mistakes made by the

query extensions revealed that a subgraph proposed by a query extension may

be interpreted in a di�erent way, e.g. as a backbone edge between two residues

or a non-peptide interaction between two di�erent parts of the protein. Incor-

poration of instances corresponding to these interpretations may improve the

ability of instance based query generation to interpret regions of the critical

point graph. The next iteration of this experiment will also include additional

attributes relevant to the peak critical points - these include a shape measure

and a calculation of the moment of inertia.

5 Conclusions

The experiments conducted to test the ability of instance based query genera-

tion to identify amino acid residues reveal that the method currently identi�es

most amino acid residues poorly. However it displays the potential for reliable

predictions of the larger types and is very good at discriminating the protein
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from the background solvent. There is potential for improving the interpreta-

tion of the critical point graph if the inexact matching strategy is implemented

and the additional understanding of the nature of the critical point graphs

gained from this experiment is incorporated into future experiments. Instance

based query generation will also be used in conjunction with other methods

such as protein theading and backbone discovery to further improve the ma-

chine interpretation of the critical point graphs.
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