
DISCOVERY OF REGULATORY INTERACTIONS THROUGH
PERTURBATION: INFERENCE AND EXPERIMENTAL DESIGN

TREY E. IDEKER †, VESTEINN THORSSON†

Department of Molecular Biotechnology, University of Washington
Seattle, WA 98195-7730, USA

(trunk@u.washington.edu, thorsson@u.washington.edu)

RICHARD M. KARP
Mathematical Sciences Research Institute
International Computer Science Institute

University of California, Berkeley
Berkeley, CA 94720-1198, USA

(karp@icsi.berkeley.edu)

We present two methods to be used interactively to infer a genetic network from gene
expression measurements. The predictor method determines the set of Boolean networks
consistent with an observed set of steady-state gene expression profiles, each generated from
a different perturbation to the genetic network. The chooser method uses an entropy-based
approach to propose an additional perturbation experiment to discriminate among the set of
hypothetical networks determined by the predictor. These methods may be used iteratively
and interactively to successively refine the genetic network: at each iteration, the perturbation
selected by the chooser is experimentally performed to generate a new gene expression
profile, and the predictor is used to derive a refined set of hypothetical gene networks using
the cumulative expression data. Performance of the predictor and chooser is evaluated on
simulated networks with varying number of genes and number of interactions per gene.

1 Introduction

Recently a variety of experimental techniques have been developed with the ability
to observe the expression of many genes simultaneously. At the forefront of these
technologies lies the DNA microarray, commonly used to monitor gene expression
at the level of mRNA abundance. Similarly, the rapid identification of proteins and
protein abundances is becoming possible through methods such as 2D
polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectroscopy1.
The principal attraction of all of these technologies is that numerous genes can be
monitored in the same experiment, making it possible to perform a global expression
analysis of the cell.

A popular application of these technologies has been to globally monitor gene
expression during execution of a cellular process or pathway. For instance, a whole-
genome microarray has been used to examine several yeast pathways for changes in
gene expression over time, including glycolysis2, cell cycle3, and sporulation4, and
the expression levels of 112 genes in the rat central nervous system have been

† first authors

Pacific Symposium on Biocomputing 5:302-313 (2000)

measured over a sequence of developmental stages5. In each case, changes in the
expression levels of hundreds to thousands of genes were observed over 7-20 time
points.

Inspired by experiments such as these, several computational methods have
been proposed for analyzing a measured time series of gene expression profiles to
infer the underlying genetic network6. The aim of these methods is to produce a
model of the network, describing how the expression level of each gene in the
network depends on external stimuli and on the expression levels of other genes.
Network interactions are inferred either by identifying statistical correlations
between expression levels7, 8, by training a neural network9, or through use of
information theoretic methods10.

Additional information about a genetic network may be gleaned experimentally
by applying a directed perturbation to the network, and observing the steady-state
expression levels of every gene in the network in the presence of the perturbation.
Perturbations may be genetic, in which the expression levels of one or more genes
are fixed by deletion or overexpression, or biological, in which one or more non-
genetic factors are altered, such as a change in growth media, a temperature
increase, or the addition of an extracellular ligand. Deletion and overexpression are
readily performed on a large scale in yeast (e.g. see the Saccharomyces Genome
Deletion Project11), and are also becoming feasible in other model organisms such
as worm, fruit-fly, and mouse as the efficiency of cell transformation improves.
Given expression data from a series of perturbation experiments, analytical methods
are now needed to infer the underlying genetic network12. In this regard, Akutsu et
al. have derived helpful upper and lower bounds on the number of perturbations that
would be required if the network were Boolean13.

To further address this need, we here describe two analytical methods and an
explicit strategy for inferring a Boolean genetic network through perturbation.
According to this strategy, the underlying network of interest is exposed to an initial
series of genetic and/or biological perturbations and a steady-state gene expression
profile is generated for each. Next, a method called the predictor is used to infer
one or more hypothetical Boolean networks consistent with these profiles. When
several networks are inferred, the predictor returns only the most parsimonious, as
measured by those networks having the fewest number of interactions.

Depending on the complexity of the genetic network and the number of initial
perturbations, numerous hypothetical networks may exist. Accordingly, a second
method called the chooser is used to propose an additional perturbation experiment
to discriminate among the set of hypothetical networks determined by the predictor.
Since perturbations can be costly in terms of experimental time and money, the
chooser uses a function based on entropy to optimally reduce the number of
hypothetical networks remaining after the additional perturbation has been
performed. The predictor and chooser may be used iteratively and interactively to

Pacific Symposium on Biocomputing 5:302-313 (2000)

successively refine the genetic network: at each iteration, the perturbation selected
by the chooser is experimentally performed to generate a new gene expression
profile, and the predictor is used to derive a refined set of hypothetical gene
networks using the cumulative expression data.

In the sections that follow we review the genetic network model used, describe
our implementation of the predictor and chooser, and discuss simulation results
exploring the performance of both methods.

2 Model Definition

We implement a genetic network using a deterministic Boolean model similar to
several that have been previously described13, 14. Briefly, a network is represented
as a graph consisting of N numbered nodes an (0 ≤ n < N), a topology of directed
edges (arrows) between nodes, and a function fn for each node. A node may
represent either a gene or a biological stimulus, where a stimulus is any relevant
physical or chemical factor which influences the network and is itself not a gene or
gene product. A node has an associated steady-state expression level xn,
representing the amount of gene product (in the case of a gene) or the amount of
stimulus present in the cell. This level is approximated as high or low and
represented by the binary value 1 or 0, respectively. An edge directed from one
node to another represents the influence of the first gene or stimulus on that of the
second, so that the expression level of a node an is a Boolean function fn of the levels
of the nodes in the network which connect (have a directed edge) to an.

An example of a small network of four nodes is shown in figure 1. In figure
1A, each node an is represented by a box, with the node number n given in the upper
half of the box. In the lower half of the box is a numerical code representing the
function fn associated with the node. This code is extracted from the output row of a
truth table, an example of which is shown in figure 1B. A truth table provides a
unique description of the Boolean function for a node, and the code (shown in bold)
represents the output level xn corresponding to each possible combination of input

 3
0010

 2
1000

 0
1

 1
1 x0 := 1

x1 := 1
x2 := x0 and x1
x3 := x1 and not x2

A A directed graph structure with
numbered nodes connected by edges

B The truth table
(shown for node 3 only)

C The logic equations for each node

x1 1 0 1 0
x2 1 1 0 0
x3 0 0 1 0

Figure 1: Example of the Boolean steady-state network model

Pacific Symposium on Biocomputing 5:302-313 (2000)

x0 x1 x2 x3

1 1 1 0 p0

- 1 0 1 p1

E = 1 - 0 0 p2

1 1 - 1 p3

1 1 1 + p4

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.

levels. In the example, the level of gene a3 is determined by the levels of genes a1

and a2 according to the associated function represented by the binary code 0010.
The steady-state expression level x3 will be high only when x1 is high and x2 is low.
The equations in figure 1C show an alternative representation of the topology of the
network and its functions.

In order to infer a genetic network of this type, a population of cells containing
a target genetic network T is monitored in the steady state over a series of M
experimental perturbations. In each perturbation pm (0 ≤ m < M) any number of
nodes may be forced to a low or high level. Genes may be perturbed through
laboratory methods for gene deletion or overexpression, while stimuli are perturbed
by altering the environment outside the cell. The observed steady-state expression
levels for all genes and stimuli over all experimental perturbations are represented
by the expression matrix E. Figure 2 shows an expression matrix generated by
several illustrative perturbations to the example genetic network of figure 1. Rows
of E represent perturbation conditions while columns represent node values in each
steady-state condition, such that matrix entry Emn is the expression level of node an in
the presence of perturbation pm. The symbols + and – are used to show that a node
has been forced to a high or low value,
respectively. For example, in
perturbation p3, node a2 has been forced
low so that x2 = 0. The set of all
expression levels of all nodes for
perturbation pm is termed a network state.
Note that perturbation p0 is what is known
to a geneticist as a wild-type state,
because no nodes have been forced high
or low.

3 Methods for Inference and Experimental Design

3.1 Inference of Genetic Networks Using the Predictor

We now describe the predictor, a method for inferring Boolean networks using the
expression data contained in the matrix E. In order to arrive at a Boolean function fn

independently for each node an, we determine a minimum set of nodes whose levels
must be included as input variables of fn to explain the observed data in E, then
construct a truth table using these nodes as inputs. Specifically, the function for
node an is determined according to the following procedure:

(1) Consider all pairs of rows (i, j) in E in which the expression level of an

differs, excluding rows in which an was itself forced to a high or low value.
For each pair, find the set Sij of all other nodes whose expression level also

Pacific Symposium on Biocomputing 5:302-313 (2000)

differs between the two rows (i, j). Because the network is self-contained,
a change in at least one of these genes or stimuli must have caused the
corresponding difference in an. Therefore, at least one node in this set must
be included as a variable in fn.

(2) Identify the smallest set of nodes Smin required to explain the observed
differences over all pairs of rows (i, j), so that at least one node in Smin is
present in each set Sij. This task is a classic combinatorial problem called
minimum set covering which can be solved by the branch and bound
technique15. More than one smallest set Smin may be found, in which case a
separate function fn is inferred and reported for each set.

(3) Once Smin has been determined for node an using the branch and bound
procedure, a truth table is determined for fn in terms of the levels of genes
and/or stimuli in Smin by taking relevant levels directly from E. If all
combinations of input levels are not present in E, the corresponding output
level for gene an cannot be determined and is represented by the symbol “*”
in the truth table.

As an example, consider how this method is used to infer the function for a3

from the expression matrix E shown in figure 2. Since the expression level of a3 is
equal to 0 in rows p0 and p2 and equal to 1 in rows p1 and p3, in step (1) we examine
the row pairs (0,1), (0,3), (1,2), and (2,3), all of which differ in the expression level
of a3. We exclude row p4, in which node a3 is itself perturbed. Next, nodes that are
in the set Sij are determined for each pair. The difference in level of a3 between rows
p0 and p1 could have been caused by a change in level of a0, a2, or both, thus S01 =
{ a0, a2}. In a similar fashion, we find that set S03 = {a2}, set S12 = {a0, a1} and set S23

= {a1}. In step (2), the minimum set which covers all four sets is found to be Smin =
{ a1, a2}.

For step (3), we determine the truth table for x3 in terms of x1 and x2. We begin
by searching rows of E for the four combinations of binary values for x1 and x2. In
row p0 and p1, we find the pair {x1, x2} equals {1, 1} and {1, 0}, respectively. In row
p2 we find that {x1, x2} = {-, 0}, but since the symbol “-” means that x1 has been
forced low, we take x1 = 0. Likewise, in row p3, we find {x1, x2} = {1, -} = {1, 0}.
As before, row p4 is excluded from the analysis. Since the remaining state {x1, x2} =
{0, 1} is never observed in E, we don’t know its effect on x3 and represent this lack
of knowledge by inserting the symbol “*” in the truth table. Thus, the final function
code for x3 is 0*10. Except for our lack of knowledge about the value of x3 when
{ x1, x2} = {0, 1}, our truth table exactly reproduces the original shown in figure 1B.

If a node an in the network is found to have more than one smallest set Smin, the
algorithm infers several networks, each with a distinct function fn corresponding to
each Smin. If several such nodes exist, a separate network hypothesis is returned for
each distinct combination of functions at each node. As an example, if nodes a2 and
a4 each have two possible functions, a total of 2 × 2 = 4 networks will be returned.

Pacific Symposium on Biocomputing 5:302-313 (2000)

The minimum set cover also ensures that only the most parsimonious networks will
be returned, in the sense that they are consistent with E and have the fewest edges
possible. If desired, the algorithm may easily be modified to produce networks
whose number of edges is not strictly minimal.

When selecting among several functions for each node, we have chosen to
restrict consideration to acyclic network models. This has the technical advantage
that the steady-state behavior is uniquely determined independent of assumptions
about the time delays of the components. For genetic networks that involve a
sequential progression of biochemical interactions with few feedback loops (e.g. see
Hereford et al.16), an acyclic network description may be biologically informative
even in cases where it is not strictly accurate.

The analysis of cyclic networks is complicated by the possibility of oscillatory
behavior. For cyclic networks, one may adopt either a synchronous model in which
each component has a fixed, known delay, or an asynchronous model in which the
delays are unknown and even nondeterministic. The methods of this paper can
easily be extended to apply to the synchronous model. The inherent nondeterminism
of the asynchronous model introduces the further complication that many possible
steady states may exist, and we are currently exploring the extent to which our
methods can be extended to handle this case.

3.2 Design of Experiments with the Chooser

The chooser uses an entropy-based procedure to select an additional perturbation
experiment to discriminate among hypothetical networks generated by the predictor
(Section 3.1). Assume that the predictor uses an initial expression matrix E to
generate L equally parsimonious, equiprobable networks and that these are
hypotheses as to the real underlying target network T. The problem is now to
choose a new perturbation experiment p, from a supplied set P of perturbation
experiments under consideration, which will best discriminate between the L
hypothetical networks17:

1) For each perturbation p in P, compute the network state resulting from p
for each of the L networks. A given perturbation will result in a total of S
distinct states s over the L networks (1 ≤ S ≤ L, 1 ≤ s ≤ S). Denoting the
number of networks giving state s by ls, evaluate the entropy score Hp

according to the expression:






−= ∑

= L

l

L

l
H s

S

s

s
p 2

1

log

2) Choose the perturbation p giving the maximum value of Hp as the next
experiment.

Pacific Symposium on Biocomputing 5:302-313 (2000)

Hp may be interpreted as the expected decrease in entropy (uncertainty as to
which of the L networks is the true network T) for perturbation p, and is therefore a
measure of the expected information gained in performing p. Complete reduction in
uncertainty is obtained under perturbation p if all L networks produce L distinct
states (Hp = log2L), while no information is gained if all L networks produce an
identical state (Hp = 0). Note that this approach is one of many which could be used
to score a given perturbation p. For example, since the number of nodes forced to a
high or low level for a given perturbation p may impact the difficulty of performing
the perturbation in the laboratory, a cost function which penalizes those p having
large numbers of forced nodes may be appropriate.

Once chosen, the new perturbation is performed experimentally on T and the
measured gene expression values added to E. A new set of parsimonious networks
is then inferred with the predictor, another perturbation experiment to discriminate
between these is selected by the chooser, and so on. This design process proceeds
iteratively, choosing a new perturbation experiment in each iteration, until either a
single parsimonious network remains (L = 1) or no perturbation in P can
discriminate between any of the L networks (Hp = 0).

The L hypothetical networks are not always completely specified, sometimes
having a “*” symbol in the function of one or more nodes (see section 3.1). In order
to complete the entropy calculation for these networks, we randomly choose a 0 or 1
to replace the undetermined “*” value. In addition, when L is large it may be
infeasible to calculate entropy over all hypothetical networks. In this case, we
randomly sample a smaller number of these networks for the entropy calculation.

4 Results

4.1 Evaluation of the Predictor Using Simulated Networks

To evaluate the performance of the predictor, a series of target genetic networks and
network perturbations were simulated to produce test sets of gene expression data.
These data were analyzed by the predictor and the inferred networks were compared
to the original simulated target networks. To construct a target network T of size N
and maximum in-degree k (where the in-degree of a node is its number of incoming
edges), network edges were chosen randomly so that the indegree of each node was
distributed uniformly between 1 and k, and restricted so that the network contained
no cycles. Functions were then chosen for each node by randomly generating an
output value (0 or 1, low or high) for each possible combination of input expression
levels, but restricted to ensure that the output expression level was dependent on
each input. The wild-type perturbation (with no nodes fixed high or low) and all N
single perturbations of T, one for each node, were simulated on each network. Note
that deleting a gene which already has a value of 0 in the wild-type state provides no

Pacific Symposium on Biocomputing 5:302-313 (2000)

new information, nor does over-expressing a gene with a value of 1 in the wild-type
state. Therefore, each node was perturbed away from the wild-type state.

Target networks were simulated in this manner over a range of network sizes N
and maximum in-degrees k, and the most parsimonious networks were inferred in
each case. The similarity between each inferred network and its target was
evaluated with regard to sensitivity, defined as the percentage of edges in the target
network that were also present in the inferred network, and specificity, defined as the
percentage of edges in the inferred network that were also present in the target
network. Results from a series of simulations over a range of N and k are shown in
Table 1. For each choice of network size, 200 target networks were generated.
Note that specificity was always significantly higher than sensitivity, and that both
steadily decreased with increasing N and k. Also, the number of nodes whose
functions had only a single minimal solution (see step 2 in section 3.1) was
approximately 90% for k = 2, independent of N. Thus although the number of
inferred networks grew exponentially with N, this number was consistently due to
ambiguities at just 10% of the nodes.

A number of non-random target network topologies modeled after known
biological networks were also simulated and inferred. The well-studied networks
responsible for bacterial chemotaxis18, galactose induction in yeast19, and yeast
meiosis20 were encoded using our network representation, and expression levels
from the wild-type state and all single perturbations were simulated as before. In all

TABLE 1: Run statistics for the predictor method over a range of N and k. Each measurement is an
average over 200 simulated target networks, with the standard error given in parentheses. Standard error

for columns G and H was always less than 1% and is not listed. For each simulation of size N and k
(given in columns A and B), the number of edges in the target network was recorded along with the
number of parsimonious inferred networks returned (columns C and D). The number of edges in the
parsimonious inferred networks was also calculated (E), as well as the avg. number of edges shared

between the target network and each inferred network (F). These figures were used to calculate
sensitivity (G) and specificity (H), also shown. Finally, the avg. number of nodes whose functions have
only a single minimal solution was recorded (I), as well as the avg. CPU time required to complete the

inference procedure (J). CPU time was computed using a 500 MHz Pentium III processor.

A B C D E F G H I J

N k
Total Sim.

Edges
Num. Inferred

Networks

Total
Inferred

Edges

Num.
Shared
Edges

Sens-
itivity

Spec-
ificity

Num.
Nodes w/
1 Soln.

CPU
Time
(sec)

5 2 4 (0.1) 1 (.02) 3 (0.1) 3 (0.1) 77% 99% 5 (0.0) 0.1 (0.0)

10 2 12 (0.1) 60 (50) 9 (0.1) 9 (0.1) 71% 95% 9 (0.1) 0.1 (0.0)

20 2 27 (0.2) 3×107 (107) 21 (0.2) 19 (0.1) 71% 92% 18 (0.1) 0.2 (0.0)

50 2 72 (0.2) 1×1012 (1012) 57 (0.3) 51 (0.3) 71% 90% 45 (0.2) 0.8 (0.0)

100 2 146 (0.7) 3×1026 (1026) 119 (0.9) 104 (0.7) 70% 88% 89 (0.5) 6.6 (0.3)

20 4 44 (0.3) 2×106 (106) 28 (0.3) 23 (0.2) 51% 84% 16 (0.1) 0.2 (0.0)

20 6 57 (0.5) 2×107 (107) 33 (0.3) 27 (0.2) 42% 82% 14 (0.2) 0.2 (0.0)

20 8 69 (0.7) 9×107 (108) 38 (0.4) 31 (0.3) 35% 82% 13 (0.2) 0.2 (0.0)

Pacific Symposium on Biocomputing 5:302-313 (2000)

three cases several parsimonious networks were inferred, some of which resembled
or corresponded exactly to the original simulated network. Detailed data and results
from these simulations will be provided in a future publication.

4.2 Evaluation of the Chooser

In order to evaluate the proposed method for experimental design, a randomly
generated target network T (N=20, k=4, 24 edges) was simulated in the wild-type
state and under N single-node perturbations (as in section 4.1) to produce an
expression matrix E. Eight parsimonious networks, all with 21 edges, were
consistent with E. To discriminate between these networks, the chooser was used to
select, from the set of all double perturbations, a double perturbation which had
maximum score Hp over the eight networks. This process of choosing double
perturbations was repeated iteratively until only a single network was inferred (a
total of 16 iterations), identical to T in this case. Note that in general, the number of
distinct double perturbations evaluated at each iteration was equal to 4⋅(N choose 2),
because each node may be forced high or low.

Figure 3 tracks changes in the number of inferred networks, the number of
edges in each inferred network, average sensitivity, and average specificity as new
double perturbations were added to E over each iteration of the design process.
Note that on the third, fifth, and tenth double perturbations performed, the number of
inferred networks grew, since it was found that none of the original solutions with
21 edges were consistent with the new data. This characteristic pattern of jumps and
decays in the number of network solutions, correlated with a monotonic increase in
the number of inferred edges, was observed consistently over many other
simulations using a wide range of different target networks T (data not shown).

It is interesting to study global features of the design process as a function of N

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

A
vg

. N
u

m
b

e
r

o
f
D

b
l.

P
e

rt
u

rb
a

tio
n

 E
xp

e
ri

m
e

n
ts

Number of Nodes NNumber of Double Perturbations

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Num. of Inferred Networks
Sensitivity (%)
Specificity (%)
Num. of Inferred Edges

Figure 3: Progress through experimental design Figure 4: Average number of perturbation
experiments vs. network size N for k = 2,
with bars indicating standard error.

Pacific Symposium on Biocomputing 5:302-313 (2000)

and k. A theoretical lower bound on the number of gene expression profiles which
must be observed to uniquely specify a genetic network has been reported21 to be
k⋅log2(N / k) for N >> k. In order to characterize the performance of our methods in
relation to this lower bound, we generated 50 target networks T for each of several
values of N with k = 2. The wild-type state and all single perturbations were
simulated on each T, and as before the chooser was used iteratively in conjunction
with the predictor to select a series of double perturbation experiments to refine the
network hypotheses until the iteration terminated (see section 3.2). The average
number of double perturbation experiments required for each N is shown in figure 4.
These preliminary results show evidence of logarithmic behavior.

5 Discussion

We have demonstrated a new method for inferring genetic networks from gene
expression data monitored over a series of perturbations. We have also described a
design process by which specific perturbation experiments may be chosen to further
reduce a given set of inferred networks or to increase their specificity and
sensitivity. This process is automatable and involves an experimentally tractable
number of perturbations. Although the minimum set covering problem (see section
3.1) is known to be NP-complete, it may be solved in polynomial time if the
maximum-indegree k is fixed. In this regard, there may exist biological rules
governing the range of values for k, as suggested by the recent observation that in
general, the cis-regulatory regions of genes are organized into modules bound by
four to eight transcription factors each22.

Our representation of a genetic network, while simple and abstract, provides a
flexible description of a biochemical pathway. The level associated with each node
could potentially refer to mRNA abundances, protein activities, or concentrations of
other macro-molecules. Different levels of regulation, including transcription,
translation, and protein modification, could be included in the model by defining
several nodes per gene, each corresponding to a different level of regulation.
Molecular compartmentalization may be treated analogously.

The predictor and chooser methods presented here are preliminary: a number of
extensions, most of them straightforward, will likely be required to make the
methods useful to the laboratory biologist. First of all, in nearly all cases of
practical interest some knowledge of network genes and interactions is available. In
this regard, pre-existing information about the network may be incorporated during
the inference process. For instance, the user might require that all inferred networks
contain certain edges or node functions, or might disallow certain node functions as
being biologically infeasible. Furthermore, the genes known to be involved in a
network could be deleted or overexpressed to generate the initial set of perturbation
experiments analyzed by the predictor.

Pacific Symposium on Biocomputing 5:302-313 (2000)

Second, the Boolean representation of gene expression assumed here is merely
a starting point. Although arbitrary data may be expressed in Boolean form through
the use of thresholding, the observed levels of gene products and other macro-
molecules may be such that a two-level description misses important features of the
network. In these cases, a multi-level description (greater than two) may be
adequate to describe the data. For example, transcript levels could be described by
one of three states: absent, basal, or induced. Our proposed methods can be
extended to multi-level data with relatively little modification. It may also be
possible to extend the method for use with continuous (rather than discrete Boolean
or multi-level) gene expression data, but this is an open problem.

Third, in this treatment we have only considered genetic networks which do not
contain cycles. This restriction may be sufficient to describe certain biochemical
networks, but biological examples of cyclic gene networks are also known (e.g. see
McAdams et al.23). Therefore, another future direction is to allow cyclic solutions
in the inference procedure, but this will require treatment of the additional
complication of oscillatory or non-deterministic behavior.

Fourth, we currently do not allow for noise or other imperfections in the gene
expression data sets used for network inference. Gene expression levels measured
with DNA microarrays or other technologies are subject to an appreciable amount of
experimental variability, and the impact of this variability on our method should be
evaluated. It seems plausible that the inference method could be modified to
account for noisy data, but this also remains an open problem.

Finally, we expect that the proposed methods may be most effective when used
in conjunction with existing software for grouping genes. For instance, a clustering
algorithm might be used to reduce the apparent size of the network by grouping
genes according to similar expression level over the series of perturbations
performed, then one representative from each cluster could be supplied to the
network inference method. Alternatively, the set of all genes could be partitioned
into strongly interacting subsets, with a single subset processed as a separate
network by the predictor. Genes could also be grouped according to similarities in
nucleotide or amino acid sequence annotation, for example clustering genes with
common transcription factor binding sites.

Acknowledgments
We wish to thank Jeremy Buhler, Rimli Sengupta, David Haynor, and Leroy Hood
for numerous helpful suggestions during the development of this research. The
work of T.I. and V.T. was supported in part by a Univ. of Washington Training
Grant in Interdisciplinary Genome Sciences. In addition, the work of V.T. was
supported by a Sloan Foundation/DOE Fellowship in Computational Molecular
Biology, and the work of T.I. was supported by a fellowship from the ARCS
Foundation.

Pacific Symposium on Biocomputing 5:302-313 (2000)

References and Notes
1. S. P. Gygi, Y. Rochon, B. R. Franza, R. Aebersold, Mol Cell Biol 19, 1720-

30 (1999).
2. J. L. DeRisi, V. R. Iyer, P. O. Brown, Science 278, 680-6 (1997).
3. P. T. Spellman, et al., Mol Biol Cell 9, 3273-97 (1998).
4. S. Chu, et al., Science 282, 699-705 (1998).
5. X. Wen, et al., Proc Natl Acad Sci U S A 95, 334-9 (1998).
6. A genetic network may be described as a collection of molecular

components, such as genes, and interactions between them that collectively
carry out a cellular function.

7. A. Arkin, J. Ross, J. Phys. Chem. 99, 970 (1995).
8. N. Friedman, I. Nachman, D. Peer, ISMB99, Heidelberg (AAAI Press,

1999).
9. D. C. Weaver, C. T. Workman, G. D. Stormo, Pacific Symposium on

Biocomputing, Hawaii, Hawaii (1999).
10. S. Liang, S. Fuhrman, S. Somogyi, Pacific Symposium on Biocomputing,

Maui, Hawaii (1998).
11. E. A. Winzeler, et al., Science 285, 901-6 (1999).
12. Because steady-state data are analyzed, such methods do not require

assumptions about the time behavior of genetic networks, such as the
assumption that all network nodes update synchronously (e.g. see ref. 14).

13. T. Akutsu, S. Kuhara, O. Maruyama, S. Miyano, Proc of the 9th ACM-
SIAM Symposium on Discrete Algorithms, (ACM Press, 1998).

14. R. Somogyi, C. Sniegoski, Complexity 1, 45-63 (1996).
15. G. L. Nemhauser, Integer and combinatorial optimization (Wiley, New

York, 1988).
16. L. M. Hereford, J. H. Hartwell, J Mol Biol 85, 445-61 (1974).
17. This formulation of the problem results in a greedy algorithm, which

chooses the single best experiment to perform next, rather than an optimal
sequence of multiple experiments.

18. U. Alon, M. G. Surette, N. Barkai, S. Leibler, Nature 397, 168-71 (1999).
19. D. Lohr, P. Venkov, J. Zlatanova, Faseb Journal 9, 777-87 (1995).
20. A. P. Mitchell, Microbiol Rev 58, 56-70 (1994).
21. J. Hertz, http://www.nordita.dk/~hertz/projects.html, Pacific Symposium

on Biocomputing, Maui, Hawaii (1998).
22. M. I. Arnone, E. H. Davidson, Development 124, 1851-64 (1997).
23. H. H. McAdams, L. Shapiro, Science 269, 650-6 (1995).

Pacific Symposium on Biocomputing 5:302-313 (2000)

